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ABSTRACT
By analyzing the distribution function of the convolution square of a convex
and symmetric body we obtain some affine invariants related to the body.
These invariants have a geometric interpretation.

Introduction and notations

The starting point of our investigation is a paper of K. Kiener [K]. Before we
explain his results we have to introduce some notation. Let C be a convex body
in R" (i.e. C is a compact convex subset of R® with non-empty interior). By I¢
we denote the indicator function of C; the convolution square of C is defined by
F = I¢ + Ic (we will also investigate the function G = I¢ * I_¢ which in the case
of a symmetric body coincides with F). The distribution function of F is given
by
Ve(8) = Vol ([F > 8]) = Vol,({z € R": F(z) > 6}

where Vol, denotes the n-dimensional Lebesgue measure. By a volume preserv-
ing linear transformation we mean a linear isomorphism T : R® — R" such that
detT = 1. In {K] Kiener proved the following theorem:

Let C be a convex body in R™. Choose & > 0 such that Vol,(C) =
Vol , (aB2) (where B2 denotes the euclidean ball of radius 1). If the distri-
bution function of the convolution square coincides with that of aB? then C is
an ellipsoid, i.e. C is an image of aBZ under a volume preserving linear trans-

formation.
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A crucial point in proving this theorem was the following formula

lim Vi)

s~ Vol , (c) ( Vol 4 (C) - &)"

where Vp denotes as above the distribution function of the convolution square
of C and P* denotes the polar of the projection body of C. We deduce this

formula from an exponential bound for the convolution square. We also analyze

= Vol (P*)

the behavior of Vp(8) for symmetric convex bodies as § tends to zero. It turns
out that there is an analogy between certain bodies associated with the convolu-
tion square of a convex symmetric body and the so-called floating bodies. The
corresponding results for the floating bodies were obtained by V.D. Milman and
M. Gromov [G.M], C. Schiitt and E. Werner [S.W] and C. Schitt [S].

I would like to thank K. Kiener for his encouragement and the referee for the

many suggestions, corrections and remarks, which clarified the subject.

The convolution square

Let C be a convex symmetric body in R? and let priC = [—c,c]| denote the
projection of C' to the first coordinate. Define

fil-e,] =R by f(z)=sup{y:(z,y) €C}.
Then f is concave and
C={(zy) eR*:z €[~c,d,~f(-2) <y < f(a)}.
For A > 0 set

zy = max{x >0: (z, f(z)) € 3C N (3C + M0, 1))}

LEMMA 1: Let A, Ag 20, A + Ao <2f(0). Then

T
0< - <A—2=
ST T ITatr S 27(0) — Ao

Proof: Fort > 0, z, satisfies the equation

fle)) = —f(-=z) + 1.

Since the function F(z) := f(z) + f(—z) is concave and symmetric, the right
hand side follows immediately. The left hand side of the inequality follows from
the fact that F is decreasing on [0, c]. 1
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LEMMA 2: Let C be a convex symmetric body in R™. Forzo € S*7! let \, Ao >0
be such that A + A < 2/||zo]]c. Let o(C,zo) denote the (n — 1)-dimensional
volume of the projection of C to the hyperplane orthogonal to xo. Then we have:

Vol CN(C + Aozo) — Vola €N (C + (A + Ao)xo)

> A (C N (C + Aozo),20) — A2e(No, 20)

where ¢(Ap, zp) = 2—1"7',__—1,\;0(6' n(C+ ono),zo) and M = "z:“C .

Proof: We obviously have
Vol CN(C+Xoz0)— Vol CN(C+(A+Xa)z0) > Ao (CO(C+(A+o)a0), 20 )-

The Quermaf on the right hand side can be computed by the formula

o= [ oo

n
Ssn-2

where z,(£) has the previously defined meaning with respect to the 2-dimensional
slice
C N span {zg,¢}.

According to Lemma 1 and Bernoulli’s inequality we get

1 n—1
723 / (“"(6) "’\27\;{6,)\0) dt
sn-2

-1
Z a(Cﬂ (C+ /\gmo),xo) (1 - 2—]:;_—/\0A) .

The purpose of the following observations is to improve the right hand estimate
of the preceding Lemma. By C} ;, we denote the convex body C N (C + Azg).
| |

LEMMA 3: Let C be a convex body in R™®. Then the one parameter family

A Ch ;, is concave for all zp € ™.

Proof: 1t is easy to show that for o, >0, a+ =1

CaH—ﬁs,ro 2 aCt,:o + ,Bca,uy 1
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LEMMA 4: Let C be a convex symmetric body in R® with volume 1. For z¢ €
S™=1 define
$zo(t) = Vol (Ci,)-

Then for allt € R
Yz (8) < exp(—|t|a(C, .1:0)).

Proof: W.l.o.g. we may assume that ¢ > 0. By Lemma 3 and the theorem of

Brunn the function
t s pLIn(t)

is concave. Hence for all A € [0, 1]
$ra(M) 2 (1= Nba (0077 + Aebiy (8)'/7)"
= (1= 2+ My (/)"

= (1 + Mz, ()™ - 1))"
= (1 + /\(exp(% log 2,(t)) — 1)) "

> (1 +A(1+ %logrﬁzo(t) - 1)),.

A n
= (1 + EIOS’/’zo(t)) .

Since the inequality is trivial for ¥,,(¢) = 0, we suppose that ¢,,(t) > 0 and
choose A > 0 so that

2 log ey (1) 2 1.

Under these assumptions we get using Bernoulli’s inequality

Yzo(A) 2 1+ Mog iz, (1).
On the other hand we get from Lemma 2
¥z, (At) <1 — Xto(C,z0)(1 — Mc(z0)).

Hence

log ¥,(t) < ~ta(C,z0)(1 — Ate(zo)).
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Since this inequality holds for all X sufficiently close to zero, we can take A to be
0. Thus

¥z,(t) < exp(—ta(C, z)).

Remark: The same proof yields the inequality

¢z°(t + to) < d’:o(to)exP (._ta(_"cl':?oo%zgo—)-)

which is valid for an arbitrary convex symmetric body C. Putting all together
we get the following

COROLLARY 1: Let C be a convex symmetric body in R®. Then for all z € $™!
and allt >0

a(C,z) ¥(t) o(C,z)
- < < 7
V=190 ©) S Vol (©) = (-t )

equivalently, for all z € R™:

lizli p- G(z) ll=lp-
T Vol (©) S Vol (©) = P Vel 10

where G denotes the convolution I¢ * I_¢ and P* the polar of the projection
body of C.

Remark: The corollary remains true if we only assume C to be a convex body.
This is because Lemma 2 is true in this context up to another factor ¢(z), whose
explicit value is not relevant in the proof of Lemma 4 — it suffices that it be

positive. |

We are now going to apply Corollary 1 to the convolution square of a convex

(symmetric) body.

THEOREM 1: Let C be a convex symmetric body in R® with volume 1 and set
C8)={zeR": Vol CN(C+z)> 86} (0<6<1).
Then C(8) is a convex symmetric body and

(1= 8)P* CC(6) C log(%)P*.
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Proof: The first assertion, which was already proved in [M], follows from the
Brunn-Minkowski inequality and the fact that

(1=X)(CN(C+2) +ACN(C +y) CCN(C+ (1= N + M).
Now let z be in $*~!. Then for p(z) := Il—lec—(_J we have
Vol ,, C N (C + p(z)z) = 6.
By Corollary 1 we get for ¢ = p(x)
1-0(C,z)p(z) < § < exp(~p(2)o(C,2))
Sllellow(1 -6) < o(C,2) < log glleleqe.

This is the desired inequality for the associated norms. 1

COROLLARY 2: Let = be in S®!, ¢t > 0 and F(tz) = ,(t) the convolution
square of a convex symmetric body C with volume 1. Let P* be the polar of the
projection body of C and V¢(8) := Vol, ([F > 6]), the distribution function of
F. Then

(1= 6)" Vol P* < Vp(8) < (log %)" Vol,, P*.
Taking the limit as § — 1 we get the above mentioned theorem of Kiener:

. Vr(6)
i T

= Vol,, P*.

In fact we get something more:

COROLLARY 3: }in}(l - 6)71C(6) = P* in the Hausdorff-metric.

The affine surface area

We next recall the notion of the floating body, more exactly the convex floating
body of a convex body C. Both concepts coincide in the case of a convex sym-
metric body C as was proved independently by K. Ball (unpublished) and by M.
Meyer and S. Reisner [M.S]. We repeat the definition of [S.W].
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Definition: The convex floating body C5 of a convex body C in R” is the in-
tersection of all halfspaces whose defining hyperplanes cut off a set of volume §
from the set C. If A denotes the set of all pairs (z,t) € R® x R such that

Vol,{yeC:(y,z)>t}=6

then
ﬂ {yeR": (y,z) <t}.
(z.)€A

Gromov and Milman [G.M] (see also [M.P]) proved that for any convex sym-
metric body C in R™ the floating body Cj is isomorphic to the Legendre Ellip-
soid L(C) and the constant of isomorphism does not depend on n (i.e. for all

"0 < 6 < Vol,, (C)/2 there exists a constant ¢(6) such that ¢(6)"'L(C) C Cs C
¢(6)L(C)). The proof depends on a concentration property which plays the same
role as Lemma 4 in the proof of Theorem 1. Actually Lemma 4 was proved in
the spirit of this concentration property.

Our next aim is to set up an analogy (cf. [B.L] for both concepts) between the
convex floating bodies Cs and the bodies C(§) by showing that the affine surface
area of a convex and symmetric body C can also be defined via the distribution
function of the convolution square of C. However, we need some definitions,

lemmata and classical results.

Definition: The afline surface area of a convex body C in R™ is defined by
' Vol, C — Vol ,, Cs

Sags(C) = lim e,

§2/(n+1)
where
—9 (wn 1 ) G2
n+1 ’
where the symbol w, denotes the volume of the unit ball BZ of 2. |

For z € 0C, the outer normal N(z), |N(2)]|2 = 1, exists almost everywhere.
If A(z,8) denotes the width of the slice

{vec: (4 N@) 2 (z, V@) - A(,5)}

of volume é, then, as was shown in [S.W], the affine surface area can be computed

as an integral

Sas(C) = / lim ﬁ/((f‘i)) dA(z)
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where ) is the Lebesgue measure on 8C.
By the formula of Schiitt and Werner we obtain for the affine surface area of
a Euclidean ball of radius r.

Saff(TB?') = nw,,r"':l’F_ll .

For the various definitions of the affine surface area we refer to [L], [Lu]. Also, ina
very recent preprint C. Schiitt proved that all of these definitions are equivalent.
For the proofs of the next three lemmata we refer to [S.W].

LEMMA 5: Let C; and C; be convex bodies in R™ such that 0 is an interior point
of Cy and Cy C Cy. Then

Vol , C1 — Vol Cp = Y / (z,N(z ))(1_ (Illlx Illlz) )d,\(z)

where z € 9C and 2’ € 8C} is such that z' lies on the line [0, z].

Remark: It is easy to see that whenever
lim 8% (2, N(@))le - 'llo|2];* = lim §™¥ (2 — ', N(a))

exists, then -
11m 6 1 (z, N (1— = 1z )
(=N (1- (f70)
also exists and both limits coincide (we assume that z' converges to z as ¢

converges to zero). |

LEMMA 6: Let C be a convex body in R". For every ¢ € OC let r(z) be the
radius of the largest Euclidean ball that is contained in C and that contains z.
Then for all @ with 0 < a <1

/r(z)_"’ dA(z) < oo.
ac
LEMMA 7: Let B%(r,h) be a cap of a Euclidean ball with radius r and height

h in R®. Then there is a continuous function g with }in& g(t) = V/2 so that for
O0<h<r

h +1Wp—~1, ntl n-1
VoI,,B?,(r,h):g(—;)" ;L—hh T r oz,
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LEMMA 8: Let C be a convex body in R", zo € 8C, 0 € C.

(i) KT is a linear isomorphism and N(=) is the normal at zq, then T*~' N(z,)
is a normal at Tzg.

(ii) There exists a linear volume preserving transformation T such that Tzy and
T*~1N(z,) are collinear and || T*~*N(zo)||l2 = 1. Moreover, this transfor-
mation does not affect the Gauss—Kronecker curvature (if it exists) of C at
xg, i.e. krc(Tzo) = ke(zo).

(iii) T :R"” —» R" is a linear volume preserving transformation, then (T'C)($)

= T(C(8)).
Proof: The proofs are Astraightforward. 1

LEMMA 9: Let E be the ellipsoid

{xER":i(%)z 31}.

Then

/zz dz Vol E(Zr?) (1 <m <n).

Proof: Define T : R® — R” by ¢; - r;ie;. Then TB2 = E and
/(m,e-‘>2 dr = /’"?]detTl(w,eiV dz = Ld%qr?/“z"%dx
E B2 B2

Vol, E 1
— 2 2
=T Vol ,, B,.n+2Vl n B

Hence

Now recall the definitions of C(6) and Cjs. Let z be in 18C(26) and let K(z) =
CN(C +2z). Then K(z) is symmetric with respect to z. Hence every hyperplane
H passing through z cuts off a subset of volume 1 Vol , K(z) (= ) from the set
K(z). Since K(z) C C we get

Vol . (CNHY) > 6.
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Therefore (cf. [B.L])
1

—2-C (26) C Cs.
In case n = 2, it turns out that both bodies coincide: Let z; be in 9CN(3C + 2x)
but distinct from z. Then there exists a line ¢ passing through both z and z;
and cutting off a segment of area § from C. Since z is the barycenter of C N g
(here we use the symmetry of C'), z must be in 9Cj.

In the general case the next Lemma is important (compare [S.W.] Lemma 6).

LEMMA 10: Let C be a convex symmetric body in R", ¢ € dC. Let zs be the
unique element with 2z5 € 0C(26) and z5 € [0,z]. Then we have the following
estimates:

() Vol o C 0 (C +225) > (1 = Jzsllc)” Volu C.

(ii) Vol , C N (—C + 225) > ("’ “"2) a " w.
lzll2

(iii) If |z — z4l[2 < &171'(::) then

Vol o C N (=C + 2z5) > 2 Vol , By (r(x) ! M) .

(In (ii) and (iii) we assume that a~'B% C C C aB?%. Both statements still hold

in the non-symmetric case.)
Proof:

(i) It is easy to check
CN(C +2z5)—z5s 2 (1 - ||lzsllc)C.
(ii) Define
K = co(z, '(I;Bn) ccC.

Then
KN(-K+2z)CCn(C+2z5) and

Vol, (K N (=K + 2z5)) > (W) a "w,.
2
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(iii) From the figure below it follows that
2 = |lz - 26l + r(2)? = 2r(2)llz — zalla cosb,
cosf = (z, N(z))||z|l;' > a2

Assuming ! < r(z), which is true when r(z) > 0 and ||z — ;|3 is small enough,

we get

h(r(z) +1) = (r(z) = D (r(z) + 1) = r¥(z) - 1

= —lle — 2513 + 2l = zsl2r(z) cos §;

we conclude that

> Iz —zsllz

llz — =]
~ 2r(x) ’

- 1
(2r(@)a™ ~ o = zslls) 25—

Hence C N (—~C + 2z5) contains the cap B? (r(a:), %i%‘h)
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COROLLARY 4: Let C be a convex symmetric body in R®. Then for all z € 8C
with r(z) >0
5_'-—2+_l<z —z5,N(z)) < cr(:c)_:_;—:

where ¢ is a constant depending only on C and n.

Proof: 6741 (z — 25, N(z)) < 67 ||e — 242
If |z ~ z5]}2 > Z5r(z) we get by Lemma 10 (ii):

- n
&> (____”x “”2) a "w, 2 |l — zs||".
llzll2

Hence
—2n_
n+1

Iz ~ 25267 < calle — @slly " < ear(z) WA

If ]z — zs)|2 < Zer(z) then it follows from Lemma 7 and Lemma 10 (jii) that

§> Vol, (B(r(z), %”_”:56&))

ntl n=1
2 callz — zsll;* r(z)7 .
Now we get
- — _n=1
le = 2oz < esllz ~ zslly r(2) T |lz — zalla
= c5r(a:)_:_1_}.

Definition: Let ¢ : U — R be a convex function on an open convex subset U of
R". We say that ¢ is twice differentiable (in a generalized sense) at zo € U if

there exists a linear map d?p(zo) : R® — R" so that for all z in a neighborhood
U(zo) of o and all subdifferentials dyp(z)

lldip(z) = dip(0) = d*o(z0)( = zo)ll2 £ Allz = zoll2)|z — Zoll2

where A : R* — R* is a non-decreasing function with }in(l) A(t) = 0 (of. [Ban],
).
THEOREM (Aleksandrov): ¢ is a.e. twice differentiable.

For a proof see [Ban].
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PROPOSITION: The Hessian H(o)(u,v) := (d®p(zo)u, v) is a positive symmetric
form (i.e. H(zo)(u,u)>0) and

(@) ~ pla0)—dp(z0)@ — o) — 5 H(zo)(z ~ 20, ~ 20)
< A(le ~ zoll2)llz — zal?

for all z in a neighborhood U(z).
See [Ban] p. 321.

Using a properly chosen translation and a rotation we may assume that the

boundary of a convex body C is given locally by

Tn = p(21,. .., Tn-1),

that 0 € C and that dyp(0) = 0.

Geometrically the above proposition says that the projection of
1
V2h
to the subspace orthogonal to (0,...,0,1) converges radially to {u € R* 1
H(0)(u,u) = 1}. The latter quadratic form is called the indicatrix of Dupin.

We now have all ingredients required for the proof of the following

(8C N[z, = h))

PROPOSITION 1: Let ¢g be a local parameterization of the boundary of a convex
symmetric body C(C R"™). Suppose that

(1) vo(0) = h,
(2) dpo(0) =0,
(3) H(0)(z,z) = —k(z} +... +22), k>0m<n-1
Define )

o) = o) +on(-a)  and  5=3 [ a)ds

[¢20]
Then
h 2 SHT

KR AR (14 g(h)

§2/(n+1) = ;
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where A and g are positive functions with ,1.1.% A(R) = ’{12}) g(h) =
Proof: For z € R*™! define
' = (21, Tm), " = (Tmi1y- -1 Tna1)-
By the proposition above we get
h— g”x'llg = A(llzll2)ll2l3 < polz) S b - gllz'llg + A(llzllz)llz2 ).
Hence
() 2k kI3 - 2A(lel)l=l < 6(z) < 24— kI3 + 24l
Assuming A(|z]|) < A, it follows that ¢(z) > 0 whenever
(k+28)[|2 + 2A]12")2 < 2h.

The equation
(k +20)|17'|2 + 24" |2 < 2k

defines an ellipsoid E in R™~! with principal axes

[ 2n 3
“VE+2ae R=Al%x

Applying Lemma 9 and the left hand side of (*) we obtain:
-5 [ ¢2 / 5+ )1 - A"} do

¢>o

=hVol(E)—-(§+A) Vol B oyt _pYoLE

1 2
m—z] r n+1(n 1-m)R

m n—-1—-m
—hVOI(E)(l_n+1 T on+1 )
= -—2—-h Vol E.
n+1
Since . X .
2 7 ==
Va£=(r55) () e
we get
2%“—1 _m _n~rn-1
§> lw" 1h2(k+2A) 2 A 2
Hence

62/(}::+1) - - ::l T "'"","( 2A) ™



Vol. 78, 1992 CONVEX SYMMETRIC BODY 323

Remark: 1) If m = n — 1 then the same method (just use the right hand side
of (*)!) gives the inequality

§2/(nt1) = ¢

(1-5(n)).

This shows that W".'TU converges to zero if m < n — 1 and it converges to
¢ k(=D/) iy = n — 1,

2) By considering oo rather than ¢ and setting § = [ ¢(z)dr we obtain the
»20
same estimates (up to irrelevant factors). This provides another proof of the

result of C. Schiitt and E. Werner. |

PROPOSITION 2: Let C be a convex symmetric body in R*. Then

%i_r'x}) cab” T (z — =5, N(z)) dX\(z) = / Ic:(:z:)"_:“_l dA(z)
ac ac

where k(z) is the generalized Gauss-Kronecker curvature.

Proof: Fix z € 3C such that k(z) exists. By Lemma 8 the values at z of the
integrands of both sides are invariant under linear transformations T satisfying
|IT*~*N(z)||z = 1. Hence we can assume that

z||N ().

Applying another affine transformation on the tangent space at Tz of TC we see
that we can also assume that the indicatrix of Dupin at r is a spherical cylinder.
Now we are in a position to apply the preceding proposition and the remark fol-
lowing it. Corollary 4, Lemma 6 and Lebesgue’s dominated convergence theorem
imply the proposition. 1

THEOREM 2: Let C be a convex symmetric body in R™. Let V be the distribu-

tion function of the convolution square of C. Then

. Ve(0)=Vp(§) 2" =
i T ey o7 (C)

Proof: Vp(0) - Vp(26) = 2"( Vol , C — Vol (%0(25))) Therefore we get, by
Propositiou 2 and [S.W],

 Vr(0)—Vp(26) 27
}1_11}) W = ZS,.” (C) [ |
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COROLLARY 5: A convex symmetric body of class C* and a polytope never have
the same distribution function.

Proof: The affine surface area of a polytope is zero! |

Remark: As was pointed out by the referee, the above Theorem holds, if we cnly
assume C to be a convex body; this is because F(z) = Ic*Ic = Vol, (CN(z—~C).
Therefore it would be more natural to work with 6(6) ={zeR": Vol CnN
(=C + z) > 6} instead of C(6). However, Theorem 1 does not hold for C(6).

As far as we know, the following problem is open: Let Vg, (VF, respectively)
be the distribution function of a polytope P; (P; resp.)C R2. Assume Vp, = Vp,.
Does this imply that P, = P; up to affine transformation? |

Polytopes
In a recent work [Schii] C. Schiitt proved the following
THEOREM: Let P be a convex polytope in R® with nonempty interior. Then

im Yoln(P) = Voln(Ps) 1 1 #a(P)

1
6—0 6(log $)1 nlnn-1

where ¢,(P) is defined as follows:

Ifn =1, then ¢,(P) = 2.
If n > 2, then we choose for every extreme point z of P a hyperplane H, that

separates z from the remaining extreme points and set

$a(P)= Y. ¢a-a(PNH,).

zeext (P)

It turns out that an analogous statement with Pj replaced by P(§) holds. The
method of proof follows Schiitt’s method, with some modifications.

LEMMA 11:

i 1 1
1 : . < = ——n -, S .
() Vol, (0 <z; < l,le z; <t) (ne 1)!7 (log t) t<1

o0
where yp(a) = [r"le " dr.
[a4

1 1
() #(log %)"—1 < yu(log %) < t{log 3" + C(n)t(log ;)" VO <t <1/2
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Proof: Define
F:RH* @2 by
tj e, i=1,...,n.
Then
|det. Df(ty,... ,t,,)| = exp(— th)

and

Vol ,(0<z; £1,IIz; <t) = / exp(—Zt,-)dtl...,dt,.

Yti2log }
=2 [ (el e
llzlh Slog &
s
=2"" / / r*1Elly e dedr
log 1 S*-1

=2"n Vol (B}) / r*le~" dr

log
1 1
(ii) Integration by parts gives the formula:

‘/,,(01) =e %! + (n - 1)7,,_1((1).
Therefore

a=—co e~ g1 a—oo o

oo
lim ____7,.((1) =1+ LIm n—1 /(é)"_ze'”“ dt

-1 ¢
=1+ lim 2— 1+ i)"'ze"z dz
a—co «
0
=1 [ |

As an example, we compute the distribution function of the convolution square

of the cube @, = [-1, 3I". It is easy to see that

F(z) :=Iq, +Ig,(z) = [J(1 = Iz;))-

i=1
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Hence

Vr(8) := Vol (F 2 6) =2" Vol , (0 < z; < 1,TI(1 — z;) > §).
Using the transformation

f:®RH" = 10,1)"

tj — l—e"i

it is easily checked that

log %
2" -1 —r
VF(&) = (T—_—l—)' Tn ]e dT.
) ¢
Thus
Vr(0) — Vr(6) _ 2n

=0 blog Iyi—1  (n— 1)

or equivalently

po Vola(@n) = Volu (§Qu(28) _ 2
50 8(log Tyn-1 T (n-1)

which, of course, coincides with the expression in Schiitts’ theorem when n = 2
(¢n(@n) = 2"n!).

LEMMA 12: Let S be a simplex in R™ such that 0 is an extreme point of S.
Define
S@26)={z € §: Vol (SN (-5 +22)) > 26}.

Then

~ n-1_1 n—1
Vol (5\ 5(26)) > 1 5(1052 n! Voln(S)) .

n—1(p — 1)} n® §
Proof: Since Vol,(S\ 5(26)) is invariant under volume preserving linear trans-
formations we may assume that the extreme points of S are given by
0,aey,...,ae, for some « >0,
where (e;)]=; is the standard unit vector basis of R™. In this case the boundary
of §(26) is given by

2"ﬁz,~ —-26=0.
7=1
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Now S contains the cube W = [0, 2]". Therefore we get, by Lemma 11:

ol . (S\ 5(26)) > Vol,, (W \ §(26))

a - é
= Vol,(0<z; < ;,Hm, < 2n_])
J=
d 6 «a
= Vol,(0<z; < 1,1'[1zj S5 )
J=
a...n § 1 a™2n1 \n-1
> _\n —_— n
2 Q) oy (toe(75))
1 2% 1n! Vol, (8)\ 1
= 2"“1(n—l)!6(log ) .
LEMMA 13: Let S be as in Lemma 12. Then
1 . 2"=1n! Vol, (S)\»—? 1., ,
Vol (S\5(26)) < 3 e 1)!b(log - )"+ elm)iliog 7).

Proof: W.lo.g. we may assume that
S =co(0,e1,...,ep).

By Lemma 11 we get for W = [0, 1]"

Vol,, (W\ 5(26)) < 5= 1(1 o 5106 2=)"" + e(n)alog 1),

Ifz,> 71—' is fixed, we get (from Lemma 11):

n-—1 n—1
)
Vol n-](OSIJ' S I,ij Sl—:z:,.,Ha:j S ;,271_)
j=] J-_-] i

< Vol,,_,(onggl—z,,,j=1, n—1, Ha:_,_ o 1)

n—1
5
— - -1 . .
=(1=2a)"" Vol g (0 75 < 1,JI='II % S g .1:,,)"‘12"—1)

(1—z, n—l2n-1 n—2 . 5
S{Cz(n) 2,.1<log’( =} ) if T S
2i-np§ otherwise

1
< e3(n)é(log g)"'z.
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Therefore

I 1 271 n—1 1 n—2
Vol (5 8(28)) <oz 108 25)" ™" + ex(m)ilog 3)

—1)!

1
+n / c3(n)é(log %)“_2 d. 1
1/n

Remark: Lemmas 12 and 13 essentially state that the volume of S \ §(26) co-
incides with that of W'\ §(25) up to terms of the order &(log $)*~2.

LEMMA 14: Let 0,e,,...,¢e, be the vertices of the simplex S, and let H, and H,
be hyperplanes such that
(l) Oa €1y...y€p—2 € H17H27

(ii) en-1 € Hy, en € H,.
Then we have for W = [0,1]" and 0 < § < 3

Vol ((W \ §(25)) NHN H;) < ¢(n, Hy, Hy)é(log %)n-—z_

Proof: Let the hyperplanes H; and H; be given by the equations
Tp = A1Tn-1 and Tp = A2Tp-1.
Then
V= Vol, (W\5@0) n & nHY)
1 1 §
= Vol, (0 <z; < ;,;I_;Il z; < GnT M1 Tn-1 <z, < Gzl’n-l)

n

n
én
=n"" Vol, (0 <z; <1, H-’Cj < a1 @1 %n-1 <z, < az-‘cn—1)

i=1
n-2 n
=n"" [ Vol 2(0<x'<lj<n—2 Hz‘<L)d(s t)
n— =Ty >4, > ] 3_2n_lst 3
Q =t

where
Q={(s,t) €[0,1)* : ays <t < aps}.
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It is easily checked that the set {(s,t) € Q : ,_,,,—_r— > 1} has measure at most
r'_-f log‘/a1 and for

6 n
2n—Tgt

1
(s,t) € Q s.t. <3
we get by Lemma 11

n-2
én™ é st _
Vol ﬂ_2(0 <zj<1,5<n-2, H zj < 2""lst) < q(n);(log _8_)1; 3

Hence
1 st ._3
V < e1(n,a1,a2)8 + 6ca(n) g(log ?) d(s,t)
[st> £251nQ

< e(m,a1,02)8(108 3)" 7. @
Replacing Schiitts’ Lemmata 1.3 and 1.4 by our 12, 13 and 14 we get the

following modification of Lemma 1.5 ([Schii}).

PROPOSITION 3: Let S be the simplex spanned by 1 =0, z3,...,Zn4+1. Assume
that S has nonempty interior and let Hy, ..., H, be hyperplanes such that

o+ o~
(*) T1,...%k-1 € Hy; xx € Hy; Tit1,.-,Tn+1 € Hey k=1,.

Then for sufficiently small § > 0 we have

1 2"=1n! Vol, (8)\n-1 1., 2
27~1nl(n — 1)!5(10g n" 6 )" —erd(log 3)

< Vol,.( S\ 5(26)) n ﬂH+)

1 2*~1n! Vol, (§)\»-1 1
< o n—2
= 2n=Ipl(n — 1)!5(1°g nn s ) + e28(log 7)
where ¢, and ¢, depend on n and on the hyperplanes Hy, ..., H,.

The proofs of the following lemmata can be found in [Schii].
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LEMMA 15: Let P be a convex symmetric polytope in R®. Then there is a family
of simplices S;, T; i = 1,...,¢,(P) and hyperplanes H,, z € ext(P), such that
() PNH;NH; =¢ifz#y.
(i) SNS=¢ifi#jand T, D P for all i.
(iii) i;'or ievery i there isz € ext(P) so that S; C PN H.
(iv) For every T; there are hyperplanes H;;,j = 1,...,n satisfying (*) of Propo-
sition 3 such that

. +_gq.
.0 () HY = Si
i=1
(v) For every i we have that
—Tie{Ti:k=1,...,6.(P)} and

—Si€{Sk:k=1,...,6.(P)}.

LEMMA 16: Let P be as above. Then there is a family of simplices S;, T;
it =1,...,¢.(P) and hyperplanes H;; j = 1,...,n + 1 so that
(@) SN§=¢ifi#],
i
#n(P)
@) U Si=~r
i=1
(i) S;CT; CP,i=1,...,6.(P),
n+1l
(lV) n H;; = Sl'y 1= 17"‘a¢n(P)1
=1
(v) (Hij)}=, satisfies (x) of Proposition 3 with respect to T,
(vi) =T € {Te : k = 1,...,8(P)}, =Si € {S& : k = 1,...,¢a(P)} for all
i=1,...,é(P).
THEOREM 3: Let P be a convex symmetric polytope in R® with nonempty in-
terior. Then we have
Vr(0) — Vr(6) _ 1
5=0 S(log Hr-1 T nl(n-1)!

$a(P)

where F is the convolution square of P and Vr denotes the distribution function

of F.

Proof: Clearly the assertion is equivalent to

L Vola (P\3P(28)) _ 1
520 é(logHyn—t  2n=Tnl(n —1)!

¢a(P).
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Let S;, Ti, i =1,...,¢(P) be the simplices given by Lemma 15. Since
T;,,-T;2P forall i=1,...,¢6.(P)
it follows that
%P(zs) = {z € P: Vol (P (P +22)) 2 25)

C {seTi: Vol (TN (T + 22)) 2 26}

=i(25) i=1"--,¢n(P)'

Therefore
$n(P)
P\ P(26)DP\ N Ti25)
i=1
6a(P)  $u(P)
2 U si\ () Tu2s)
J=1 i=1
6n(P)
2 | s\ T;(26)
J—
$n(P) _
= U (T; nﬂ HE)\ T(26).
Hence

$n(P) n
Vol, (P\ = P(26)) > 3 Vol (T3 \ T3(28) n () H;
=1

J_
We can assume that the only extreme point of T; which is also an extreme point

of P is zero. This follows from the simple observation that
Vol (Tj(26)) = Vol ((Tj — z0)(26))-
By Proposition 3 (using the right hand side inequality) we have the estimate

1 2,._1n!mjin Vol , (T}) n-1
Vol,, (P \ P(25)) m%;(]’ﬁ log — =

— ¢(n, P)é(log %)"_2.
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Since
log &
lim %8s

=1 forall ¢>0
5~0 log §

we get the desired estimate from below. Using Lemma 16 instead of Lemma 15
we get the same estimate from above. Indeed, let S;, T;, i = 1,..., ¢,(P) be the

simplices given by Lemma 16, then
T,-T;CP VYi=1,...,6.(P).

Thus 1
5P(26) 2 T(26) Vi=1,...,6n(P).
We conclude that

$n(P)
P\ P(26)CP\ U 7i26)

i=1

#n(P) én(P)

= U si\ U Tu29)

j=1 i=1
$alP)
c U $i\T28)
j=1
¢n(P) n+1 ~
= U @wn (w5
i=1
éa(P)

- U Tnﬂ \T(Z(S),

therefore we obtain by Proposition 3

éa(P)

Vol , (P\ -;-P(Zé)) < > vola ((T;\ Fi(20) ﬂ(n]H;E)
=1 i=1

2n—1n| max Vo}n(TJ) n-1

! 8a(P)5 (tog =52 —

< —_
~ 2»=1pl(n - 1)!

+ ¢(n, P)é(log %)"_2. 1
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Remark: It is easy to check that Theorem 3 also holds in the non-symmetric
case. L]

From Theorem 3 and Corollary 2 we immediately get

COROLLARY 6: Let P be a convex symmetric polytope in R?, then the distribu-
tion function of the convolution square of P determines

(i) Vol 2(P),

(ii) Vol o(P*),

(iii) the number of extreme points of P.
COROLLARY T7:

(i) Let C be a convex symmetric body in R? such that the distribution function
of the convolution square of C' is equal to the distribution function of the
convolution square of [—1,1}2. Then C is an affine image of [-1, 1},

(it) If C is a convex body in R™ such that the distribution function of the
convolution square is equal to that of the n-dimensional simplex. Then C

is an affine image of the simplex.
Actually (i) and (ii) of Corollary 6 imply that C is an affine image of [—1, 1]?,
for these are the only convex symmetric bodies that minimize
Vol 3(P) - Vol 3(P*).
The second assertion of the corollary follows from the fact that for all n-dimen-
sional polytopes P ¢,(P) > (n + 1)! with equality iff P is a simplex.

Remarks: 1t follows from a theorem of Rogers and Shephard that the simplex
in R” is also determined by the distribution function of G = I¢ * I_¢. This is

because the simplex is the only convex body C in R” satisfying
Vol, (CN(C +2)) = (1-|z]ls(c))” Vol C

where S(C) = (C — C), i.e. such that equality holds in Lemma 10 (1).
Using the above identity the function G associated with the simplex S can be
easily computed:

G(z) = (1 = ||z]js=s)" Vol (S).

Therefore the distribution function of G is given by

Ve (6) = (1 - (V_ai(—sj)ll ")" (2:) Vol , ()
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and V(0) — V(6) does not behave like é(log )"~ as 6 tends to zero. However,
Theorem 1 provides a tool to determine the polar of the projection body P§ of
a simplex S:

F(0) - F(tz)

lzllp; = lim ;

= nl|z|s—s Vola(S).

Hence 1
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