THE DISTRIBUTION FUNCTION OF THE CONVOLUTION SQUARE OF A CONVEX SYMMETRIC BODY IN \mathbb{R}^n

ΒY

M. Schmuckenschläger

Institut für Mathematik, J. Kepler Universität, Linz, Austria

ABSTRACT

By analyzing the distribution function of the convolution square of a convex and symmetric body we obtain some affine invariants related to the body. These invariants have a geometric interpretation.

Introduction and notations

The starting point of our investigation is a paper of K. Kiener [K]. Before we explain his results we have to introduce some notation. Let C be a convex body in \mathbb{R}^n (i.e. C is a compact convex subset of \mathbb{R}^n with non-empty interior). By I_C we denote the indicator function of C; the convolution square of C is defined by $F = I_C * I_C$ (we will also investigate the function $G = I_C * I_{-C}$ which in the case of a symmetric body coincides with F). The distribution function of F is given by

$$V_F(\delta) = \operatorname{Vol}_n([F > \delta]) = \operatorname{Vol}_n(\{x \in \mathbb{R}^n : F(x) > \delta\})$$

where Vol_n denotes the n-dimensional Lebesgue measure. By a volume preserving linear transformation we mean a linear isomorphism $T : \mathbb{R}^n \to \mathbb{R}^n$ such that $\det T = 1$. In [K] Kiener proved the following theorem:

Let C be a convex body in \mathbb{R}^n . Choose $\alpha > 0$ such that $\operatorname{Vol}_n(C) = \operatorname{Vol}_n(\alpha B_n^2)$ (where B_n^2 denotes the euclidean ball of radius 1). If the distribution function of the convolution square coincides with that of αB_n^2 then C is an ellipsoid, i.e. C is an image of αB_n^2 under a volume preserving linear transformation.

Received December 30, 1990 and in revised form July 17, 1991

A crucial point in proving this theorem was the following formula

$$\lim_{\delta \to \operatorname{Vol}_n(C)} \frac{V_F(\delta)}{(\operatorname{Vol}_n(C) - \delta)^n} = \operatorname{Vol}_n(P^*)$$

where V_F denotes as above the distribution function of the convolution square of C and P^* denotes the polar of the projection body of C. We deduce this formula from an exponential bound for the convolution square. We also analyze the behavior of $V_F(\delta)$ for symmetric convex bodies as δ tends to zero. It turns out that there is an analogy between certain bodies associated with the convolution square of a convex symmetric body and the so-called floating bodies. The corresponding results for the floating bodies were obtained by V.D. Milman and M. Gromov [G.M], C. Schütt and E. Werner [S.W] and C. Schütt [S].

I would like to thank K. Kiener for his encouragement and the referee for the many suggestions, corrections and remarks, which clarified the subject.

The convolution square

Let C be a convex symmetric body in \mathbb{R}^2 and let $pr_1C = [-c, c]$ denote the projection of C to the first coordinate. Define

$$f: [-c,c] \to \mathbb{R}$$
 by $f(x) = \sup\{y: (x,y) \in C\}.$

Then f is concave and

:

$$C = \left\{ (x,y) \in \mathbb{R}^2 : x \in [-c,c], -f(-x) \le y \le f(x) \right\}.$$

For $\lambda \geq 0$ set

$$x_{\lambda} := \max \Big\{ x \ge 0 : (x, f(x)) \in \partial C \cap (\partial C + \lambda(0, 1)) \Big\}.$$

LEMMA 1: Let λ , $\lambda_0 \ge 0$, $\lambda + \lambda_0 \le 2f(0)$. Then

$$0 \leq x_{\lambda_0} - x_{\lambda_0 + \lambda} \leq \lambda \, \frac{x_{\lambda_0}}{2f(0) - \lambda_0}$$

Proof: For $t \ge 0$, x_t satisfies the equation

$$f(x_t) = -f(-x_t) + t.$$

Since the function F(x) := f(x) + f(-x) is concave and symmetric, the right hand side follows immediately. The left hand side of the inequality follows from the fact that F is decreasing on [0, c].

LEMMA 2: Let C be a convex symmetric body in \mathbb{R}^n . For $x_0 \in S^{n-1}$ let $\lambda, \lambda_0 \geq 0$ be such that $\lambda + \lambda_0 \leq 2/||x_0||_C$. Let $\sigma(C, x_0)$ denote the (n-1)-dimensional volume of the projection of C to the hyperplane orthogonal to x_0 . Then we have:

$$Vol_n C \cap (C + \lambda_0 x_0) - Vol_n C \cap (C + (\lambda + \lambda_0) x_0)$$
$$\geq \lambda \sigma (C \cap (C + \lambda_0 x_0), x_0) - \lambda^2 c(\lambda_0, x_0)$$
where $c(\lambda_0, x_0) = \frac{n-1}{2M - \lambda_0} \sigma (C \cap (C + \lambda_0 x_0), x_0)$ and $M = \frac{1}{\|x_0\|_C}$.

Proof: We obviously have

$$\operatorname{Vol}_{n} C \cap (C + \lambda_{0} x_{0}) - \operatorname{Vol}_{n} C \cap (C + (\lambda + \lambda_{0}) x_{0}) \geq \lambda \sigma \Big(C \cap (C + (\lambda + \lambda_{0}) x_{0}), x_{0} \Big).$$

The Quermaß on the right hand side can be computed by the formula

$$\sigma = \frac{1}{n-1} \int_{S^{n-2}} x_{\lambda_0 + \lambda}(\xi)^{n-1} d\xi$$

where $x_t(\xi)$ has the previously defined meaning with respect to the 2-dimensional slice

$$C \cap \operatorname{span} \{x_0, \xi\}.$$

According to Lemma 1 and Bernoulli's inequality we get

$$\sigma \geq \frac{1}{n-1} \int_{S^{n-2}} \left(x_{\lambda_0}(\xi) - \lambda \frac{x_{\lambda_0}(\xi)}{2M - \lambda_0} \right)^{n-1} d\xi$$
$$\geq \sigma \left(C \cap (C + \lambda_0 x_0), x_0 \right) \left(1 - \frac{n-1}{2M - \lambda_0} \lambda \right).$$

The purpose of the following observations is to improve the right hand estimate of the preceding Lemma. By C_{λ,x_0} we denote the convex body $C \cap (C + \lambda x_0)$.

LEMMA 3: Let C be a convex body in \mathbb{R}^n . Then the one parameter family $\lambda \mapsto C_{\lambda,x_0}$ is concave for all $x_0 \in S^{n-1}$.

Proof: It is easy to show that for $\alpha, \beta \ge 0, \alpha + \beta = 1$

$$C_{\alpha t+\beta s,x_0} \supseteq \alpha C_{t,x_0} + \beta C_{s,x_0}.$$

LEMMA 4: Let C be a convex symmetric body in \mathbb{R}^n with volume 1. For $x_0 \in S^{n-1}$ define

$$\psi_{\boldsymbol{x}_0}(t) = \operatorname{Vol}_{\boldsymbol{n}}(C_{t,\boldsymbol{x}_0}).$$

Then for all $t \in \mathbb{R}$

$$\psi_{x_0}(t) \leq \exp\left(-|t|\sigma(C,x_0)\right).$$

Proof: W.l.o.g. we may assume that $t \ge 0$. By Lemma 3 and the theorem of Brunn the function

$$t\mapsto\psi_{x_0}^{1/n}(t)$$

is concave. Hence for all $\lambda \in [0, 1]$

$$\begin{split} \psi_{x_0}(\lambda t) &\geq \left((1-\lambda)\psi_{x_0}(0)^{1/n} + \lambda\psi_{x_0}(t)^{1/n} \right)^n \\ &= \left(1-\lambda + \lambda\psi_{x_0}(t)^{1/n} \right)^n \\ &= \left(1+\lambda \left(\psi_{x_0}(t)^{1/n} - 1 \right) \right)^n \\ &= \left(1+\lambda \left(\exp\left(\frac{1}{n}\log\psi_{x_0}(t)\right) - 1 \right) \right)^n \\ &\geq \left(1+\lambda \left(1+\frac{1}{n}\log\psi_{x_0}(t) - 1 \right) \right)^n \\ &= \left(1+\frac{\lambda}{n}\log\psi_{x_0}(t) \right)^n. \end{split}$$

Since the inequality is trivial for $\psi_{x_0}(t) = 0$, we suppose that $\psi_{x_0}(t) > 0$ and choose $\lambda \ge 0$ so that

$$\frac{\lambda}{n}\log\psi_{x_0}(t)\geq -1.$$

Under these assumptions we get using Bernoulli's inequality

$$\psi_{x_0}(\lambda t) \ge 1 + \lambda \log \psi_{x_0}(t).$$

On the other hand we get from Lemma 2

$$\psi_{x_0}(\lambda t) \leq 1 - \lambda t \sigma(C, x_0) \big(1 - \lambda t c(x_0) \big).$$

Hence

$$\log \psi_{x_0}(t) \leq -t\sigma(C, x_0) (1 - \lambda tc(x_0)).$$

Since this inequality holds for all λ sufficiently close to zero, we can take λ to be 0. Thus

$$\psi_{x_0}(t) \leq \exp(-t\sigma(C,x_0)).$$

Remark: The same proof yields the inequality

$$\psi_{x_0}(t+t_0) \leq \psi_{x_0}(t_0) \exp\left(-t \frac{\sigma(C_{t_0,x_0},x_0)}{\psi_{x_0}(t_0)}\right)$$

which is valid for an arbitrary convex symmetric body C. Putting all together we get the following

COROLLARY 1: Let C be a convex symmetric body in \mathbb{R}^n . Then for all $x \in S^{n-1}$ and all $t \ge 0$

$$1 - t \frac{\sigma(C, x)}{\operatorname{Vol}_n(C)} \le \frac{\psi_x(t)}{\operatorname{Vol}_n(C)} \le \exp\left(-t \frac{\sigma(C, x)}{\operatorname{Vol}_n C}\right)$$

equivalently, for all $x \in \mathbb{R}^n$:

$$1 - \frac{\|x\|_{P^{\bullet}}}{\operatorname{Vol}_{n}(C)} \leq \frac{G(x)}{\operatorname{Vol}_{n}(C)} \leq \exp(-\frac{\|x\|_{P^{\bullet}}}{\operatorname{Vol}_{n}(C)})$$

where G denotes the convolution $I_C * I_{-C}$ and P^* the polar of the projection body of C.

Remark: The corollary remains true if we only assume C to be a convex body. This is because Lemma 2 is true in this context up to another factor c(x), whose explicit value is not relevant in the proof of Lemma 4 – it suffices that it be positive.

We are now going to apply Corollary 1 to the convolution square of a convex (symmetric) body.

THEOREM 1: Let C be a convex symmetric body in \mathbb{R}^n with volume 1 and set

$$C(\delta) = \left\{ x \in \mathbb{R}^n : Vol \ C \cap (C+x) \ge \delta \right\} \qquad (0 \le \delta \le 1).$$

Then $C(\delta)$ is a convex symmetric body and

$$(1-\delta)P^* \subseteq C(\delta) \subseteq \log\left(\frac{1}{\delta}\right)P^*.$$

Proof: The first assertion, which was already proved in [M], follows from the Brunn-Minkowski inequality and the fact that

$$(1-\lambda)(C\cap(C+x))+\lambda(C\cap(C+y))\subseteq C\cap(C+(1-\lambda)x+\lambda y).$$

Now let x be in S^{n-1} . Then for $p(x) := \frac{1}{\|x\|_{C(\delta)}}$ we have

$$\operatorname{Vol}_{n} C \cap (C + p(x)x) = \delta.$$

By Corollary 1 we get for t = p(x)

$$1 - \sigma(C, x)p(x) \le \delta \le \exp\left(-p(x)\sigma(C, x)\right)$$
$$\iff ||x||_{C(\delta)}(1 - \delta) \le \sigma(C, x) \le \log\frac{1}{\delta}||x||_{C(\delta)}.$$

This is the desired inequality for the associated norms.

COROLLARY 2: Let x be in S^{n-1} , $t \ge 0$ and $F(tx) = \psi_x(t)$ the convolution square of a convex symmetric body C with volume 1. Let P^* be the polar of the projection body of C and $V_F(\delta) := \operatorname{Vol}_n([F > \delta])$, the distribution function of F. Then

$$(1-\delta)^n \operatorname{Vol}_n P^* \leq V_F(\delta) \leq (\log \frac{1}{\delta})^n \operatorname{Vol}_n P^*.$$

Taking the limit as $\delta \to 1$ we get the above mentioned theorem of Kiener:

$$\lim_{\delta \to 1} \frac{V_F(\delta)}{(1-\delta)^n} = \operatorname{Vol}_n P^*.$$

In fact we get something more:

COROLLARY 3: $\lim_{\delta \to 1} (1 - \delta)^{-1} C(\delta) = P^*$ in the Hausdorff-metric.

The affine surface area

We next recall the notion of the floating body, more exactly the convex floating body of a convex body C. Both concepts coincide in the case of a convex symmetric body C as was proved independently by K. Ball (unpublished) and by M. Meyer and S. Reisner [M.S]. We repeat the definition of [S.W]. Definition: The convex floating body C_{δ} of a convex body C in \mathbb{R}^n is the intersection of all halfspaces whose defining hyperplanes cut off a set of volume δ from the set C. If A denotes the set of all pairs $(x,t) \in \mathbb{R}^n \times \mathbb{R}$ such that

$$\operatorname{Vol}_n \{y \in C : \langle y, x \rangle \geq t\} = \delta$$

then

$$C_{\delta} = \bigcap_{(x,t)\in A} \{ y \in \mathbb{R}^n : \langle y, x \rangle \leq t \}.$$

Gromov and Milman [G.M] (see also [M.P]) proved that for any convex symmetric body C in \mathbb{R}^n the floating body C_{δ} is isomorphic to the Legendre Ellipsoid L(C) and the constant of isomorphism does not depend on n (i.e. for all $0 < \delta < \operatorname{Vol}_n(C)/2$ there exists a constant $c(\delta)$ such that $c(\delta)^{-1}L(C) \subseteq C_{\delta} \subseteq c(\delta)L(C)$). The proof depends on a concentration property which plays the same role as Lemma 4 in the proof of Theorem 1. Actually Lemma 4 was proved in the spirit of this concentration property.

Our next aim is to set up an analogy (cf. [B.L] for both concepts) between the convex floating bodies C_{δ} and the bodies $C(\delta)$ by showing that the affine surface area of a convex and symmetric body C can also be defined via the distribution function of the convolution square of C. However, we need some definitions, lemmata and classical results.

Definition: The affine surface area of a convex body C in \mathbb{R}^n is defined by

$$S_{aff}(C) = \lim_{\delta \to 0} c_n \frac{\operatorname{Vol}_n C - \operatorname{Vol}_n C_{\delta}}{\delta^{2/(n+1)}}$$

where

$$c_n = 2\left(\frac{w_{n-1}}{n+1}\right)^{\frac{2}{n+1}},$$

where the symbol w_n denotes the volume of the unit ball B_n^2 of l_n^2 .

For $x \in \partial C$, the outer normal N(x), $||N(x)||_2 = 1$, exists almost everywhere. If $\Delta(x, \delta)$ denotes the width of the slice

$$\left\{y \in C : \langle y, N(x) \rangle \geq \langle x, N(x) \rangle - \Delta(x, \delta) \right\}$$

of volume δ , then, as was shown in [S.W], the affine surface area can be computed as an integral

$$S_{aff}(C) = \int_{\partial C} \lim_{\delta \to 0} c_n \frac{\Delta(x, \delta)}{\delta^{2/(n+1)}} \, d\lambda(x)$$

where λ is the Lebesgue measure on ∂C .

By the formula of Schütt and Werner we obtain for the affine surface area of a Euclidean ball of radius r.

$$S_{aff}(rB_n^2) = nw_n r^{\frac{n(n-1)}{n+1}}$$

For the various definitions of the affine surface area we refer to [L], [Lu]. Also, in a very recent preprint C. Schütt proved that all of these definitions are equivalent.

For the proofs of the next three lemmata we refer to [S.W].

LEMMA 5: Let C_1 and C_2 be convex bodies in \mathbb{R}^n such that 0 is an interior point of C_2 and $C_2 \subseteq C_1$. Then

$$\operatorname{Vol}_{n} C_{1} - \operatorname{Vol}_{n} C_{2} = \frac{1}{n} \int_{\partial C_{1}} \langle x, N(x) \rangle \left(1 - \left(\frac{\|x'\|_{2}}{\|x\|_{2}} \right)^{n} \right) d\lambda(x)$$

where $x \in \partial C_1$ and $x' \in \partial C_2$ is such that x' lies on the line [0, x].

Remark: It is easy to see that whenever

$$\lim_{\delta \to 0} \delta^{-\frac{2}{n+1}} \langle x, N(x) \rangle \|x - x'\|_2 \|x\|_2^{-1} = \lim_{\delta \to 0} \delta^{-\frac{2}{n+1}} \langle x - x', N(x) \rangle$$

exists, then

$$\lim_{\delta \to 0} \frac{1}{n} \delta^{-\frac{2}{n+1}} \langle x, N(x) \rangle \left(1 - \left(\frac{\|x'\|_2}{\|x\|_2} \right)^n \right)$$

also exists and both limits coincide (we assume that x' converges to x as δ converges to zero).

LEMMA 6: Let C be a convex body in \mathbb{R}^n . For every $x \in \partial C$ let r(x) be the radius of the largest Euclidean ball that is contained in C and that contains x. Then for all α with $0 < \alpha < 1$

$$\int_{\partial C} r(x)^{-\alpha} \, d\lambda(x) < \infty.$$

LEMMA 7: Let $B_n^2(r,h)$ be a cap of a Euclidean ball with radius r and height h in \mathbb{R}^n . Then there is a continuous function g with $\lim_{t\to 0} g(t) = \sqrt{2}$ so that for 0 < h < r

$$\operatorname{Vol}_{n} B_{n}^{2}(r,h) = g\left(\frac{h}{r}\right)^{n+1} \frac{w_{n-1}}{n+1} h^{\frac{n+1}{2}} r^{\frac{n-1}{2}}.$$

LEMMA 8: Let C be a convex body in \mathbb{R}^n , $x_0 \in \partial C$, $0 \in \mathring{C}$.

- (i) If T is a linear isomorphism and $N(x_0)$ is the normal at x_0 , then $T^{*-1}N(x_0)$ is a normal at Tx_0 .
- (ii) There exists a linear volume preserving transformation T such that Tx₀ and T^{*-1}N(x₀) are collinear and ||T^{*-1}N(x₀)||₂ = 1. Moreover, this transformation does not affect the Gauss-Kronecker curvature (if it exists) of C at x₀, i.e. k_{TC}(Tx₀) = k_C(x₀).
- (iii) If $T : \mathbb{R}^n \to \mathbb{R}^n$ is a linear volume preserving transformation, then $(TC)(\delta) = T(C(\delta))$.
- Proof: The proofs are straightforward.

LEMMA 9: Let E be the ellipsoid

$$\left\{x \in \mathbb{R}^n : \sum_{i=1}^n \left(\frac{x_i}{r_i}\right)^2 \le 1\right\}.$$

Then

$$\int\limits_E \sum_{i=1}^m x_i^2 dx = \frac{\operatorname{Vol}_n E}{n+2} \left(\sum_{i=1}^m r_i^2 \right) \qquad (1 \le m \le n).$$

Proof: Define $T: \mathbb{R}^n \to \mathbb{R}^n$ by $e_i \mapsto r_i e_i$. Then $TB_n^2 = E$ and

$$\int_{E} \langle x, e_i \rangle^2 \, dx = \int_{B_n^2} r_i^2 |\det T| \langle x, e_i \rangle^2 \, dx = \frac{|\det T|}{n} r_i^2 \int_{B_n^2} ||x||_2^2 \, dx$$
$$= r_i^2 \frac{\operatorname{Vol}_n E}{\operatorname{Vol}_n B_n} \frac{1}{n+2} \operatorname{Vol}_n B_n^2.$$

Hence

$$\int_{E} \sum_{i=1}^{m} x_i^2 dx = \frac{\operatorname{Vol}_n E}{n+2} \left(\sum_{i=1}^{m} r_i^2 \right).$$

Now recall the definitions of $C(\delta)$ and C_{δ} . Let x be in $\frac{1}{2}\partial C(2\delta)$ and let $K(x) = C \cap (C+2x)$. Then K(x) is symmetric with respect to x. Hence every hyperplane H passing through x cuts off a subset of volume $\frac{1}{2}$ Vol_n $K(x) (= \delta)$ from the set K(x). Since $K(x) \subseteq C$ we get

$$\operatorname{Vol}_n(C \cap H^+) \geq \delta.$$

Therefore (cf. [B.L])

$$\frac{1}{2}C(2\delta)\subseteq C_{\delta}.$$

In case n = 2, it turns out that both bodies coincide: Let x_1 be in $\partial C \cap (\partial C + 2x)$ but distinct from x. Then there exists a line g passing through both x and x_1 and cutting off a segment of area δ from C. Since x is the barycenter of $C \cap g$ (here we use the symmetry of C), x must be in ∂C_{δ} .

In the general case the next Lemma is important (compare [S.W.] Lemma 6).

LEMMA 10: Let C be a convex symmetric body in \mathbb{R}^n , $x \in \partial C$. Let x_{δ} be the unique element with $2x_{\delta} \in \partial C(2\delta)$ and $x_{\delta} \in [0, x]$. Then we have the following estimates:

(i)
$$\operatorname{Vol}_n C \cap (C+2x_{\delta}) \ge (1-\|x_{\delta}\|_C)^n \operatorname{Vol}_n C.$$

(ii)
$$\operatorname{Vol}_{n} C \cap (-C+2x_{\delta}) \geq \left(\frac{\|x-x_{\delta}\|_{2}}{\|x\|_{2}}\right)^{n} \alpha^{-n} w_{n}.$$

(iii) If
$$||x - x_{\delta}||_2 \leq \frac{1}{\alpha^2} r(x)$$
 then
 $\operatorname{Vol}_n C \cap (-C + 2x_{\delta}) \geq 2 \operatorname{Vol}_n B_n\left(r(x), \frac{1}{2} \frac{||x - x_{\delta}||_2}{\alpha^2}\right).$

(In (ii) and (iii) we assume that $\alpha^{-1}B_n^2 \subseteq C \subseteq \alpha B_n^2$. Both statements still hold in the non-symmetric case.)

Proof:

(i) It is easy to check

$$C \cap (C+2x_{\delta}) - x_{\delta} \supseteq (1-\|x_{\delta}\|_{C})C.$$

(ii) Define

$$K=co(x,\frac{1}{\alpha}B_n)\subseteq C.$$

Then

$$K \cap (-K+2x_{\delta}) \subseteq C \cap (C+2x_{\delta})$$
 and

$$\operatorname{Vol}_{n}\left(K\cap\left(-K+2x_{\delta}\right)\right)\geq\left(\frac{\|x-x_{\delta}\|_{2}}{\|x\|_{2}}\right)^{n}\alpha^{-n}w_{n}.$$

Vol. 78, 1992

(iii) From the figure below it follows that

$$l^{2} = ||x - x_{\delta}||_{2}^{2} + r(x)^{2} - 2r(x)||x - x_{\delta}||_{2} \cos \theta,$$

$$\cos \theta = \langle x, N(x) \rangle ||x||_{2}^{-1} \ge \alpha^{-2}.$$

Assuming $l \leq r(x)$, which is true when r(x) > 0 and $||x - x_{\delta}||_2$ is small enough, we get

$$h(r(x) + l) = (r(x) - l)(r(x) + l) = r^{2}(x) - l^{2}$$
$$= -||x - x_{\delta}||_{2}^{2} + 2||x - x_{\delta}||_{2}r(x)\cos\theta;$$

we conclude that

$$h \geq \frac{\|x - x_{\delta}\|_{2}}{2r(x)} (2r(x)\alpha^{-2} - \|x - x_{\delta}\|_{2}) \geq \frac{1}{2} \frac{\|x - x_{\delta}\|}{\alpha^{2}}.$$

Hence $C \cap (-C + 2x_{\delta})$ contains the cap $B_n^2\left(r(x), \frac{1}{2} \frac{\|x - x_{\delta}\|_2}{\alpha^2}\right)$.

COROLLARY 4: Let C be a convex symmetric body in \mathbb{R}^n . Then for all $x \in \partial C$ with r(x) > 0

$$\delta^{-\frac{2}{n+1}}\langle x-x_{\delta}, N(x)\rangle \leq cr(x)^{-\frac{n-1}{n+1}}$$

where c is a constant depending only on C and n.

Proof: $\delta^{-\frac{2}{n+1}} \langle x - x_{\delta}, N(x) \rangle \leq \delta^{-\frac{2}{n+1}} ||x - x_{\delta}||_2$. If $||x - x_{\delta}||_2 \geq \frac{1}{\alpha^2} r(x)$ we get by Lemma 10 (ii):

$$\delta \geq \left(\frac{\|x-x_{\delta}\|_2}{\|x\|_2}\right)^n \alpha^{-n} w_n \geq c_1 \|x-x_{\delta}\|^n.$$

Hence

$$\|x-x_{\delta}\|_{2}\delta^{-\frac{2}{n+1}} \leq c_{2}\|x-x_{\delta}\|_{2}^{1-\frac{2n}{n+1}} \leq c_{3}r(x)^{-\frac{n-1}{n+1}}.$$

If $||x - x_{\delta}||_2 \leq \frac{1}{\alpha^2} r(x)$ then it follows from Lemma 7 and Lemma 10 (iii) that

$$\delta \geq \operatorname{Vol}_{n}\left(B\left(r(x), \frac{1}{2}\frac{\|x-x_{\delta}\|_{2}}{\alpha^{2}}\right)\right)$$
$$\geq c_{4}\|x-x_{\delta}\|_{2}^{\frac{n+1}{2}}r(x)^{\frac{n-1}{2}}.$$

Now we get

$$\begin{aligned} \|x - x_{\delta}\|_{2} \delta^{-\frac{2}{n+1}} &\leq c_{5} \|x - x_{\delta}\|_{2}^{-1} r(x)^{-\frac{n-1}{n+1}} \|x - x_{\delta}\|_{2} \\ &= c_{5} r(x)^{-\frac{n-1}{n+1}}. \end{aligned}$$

Definition: Let $\varphi: U \to \mathbb{R}$ be a convex function on an open convex subset U of \mathbb{R}^n . We say that φ is twice differentiable (in a generalized sense) at $x_0 \in U$ if there exists a linear map $d^2\varphi(x_0): \mathbb{R}^n \to \mathbb{R}^n$ so that for all x in a neighborhood $U(x_0)$ of x_0 and all subdifferentials $d\varphi(x)$

$$\|d\varphi(x) - d\varphi(x_0) - d^2\varphi(x_0)(x - x_o)\|_2 \le \Delta(\|x - x_0\|_2)\|x - x_0\|_2$$

where $\Delta : \mathbb{R}^+ \to \mathbb{R}^+$ is a non-decreasing function with $\lim_{t\to 0} \Delta(t) = 0$ (cf. [Ban], [S]).

THEOREM (Aleksandrov): φ is a.e. twice differentiable.

For a proof see [Ban].

PROPOSITION: The Hessian $H(x_0)(u, v) := \langle d^2 \varphi(x_0)u, v \rangle$ is a positive symmetric form (i.e. $H(x_0)(u, u) \ge 0$) and

$$\begin{aligned} |\varphi(x) - \varphi(x_0) - d\varphi(x_0)(x - x_0) - \frac{1}{2}H(x_0)(x - x_0, x - x_0)| \\ &\leq \tilde{\Delta}(||x - x_0||_2)||x - x_0||_2^2 \end{aligned}$$

for all x in a neighborhood $U(x_0)$.

See [Ban] p. 321.

Using a properly chosen translation and a rotation we may assume that the boundary of a convex body C is given locally by

$$x_n = \varphi(x_1,\ldots,x_{n-1}),$$

that $0 \in \partial C$ and that $d\varphi(0) = 0$.

Geometrically the above proposition says that the projection of

$$\frac{1}{\sqrt{2h}} \big(\partial C \cap [x_n = h]\big)$$

to the subspace orthogonal to $(0, \ldots, 0, 1)$ converges radially to $\{u \in \mathbb{R}^{n-1} : H(0)(u, u) = 1\}$. The latter quadratic form is called the indicatrix of Dupin.

We now have all ingredients required for the proof of the following

PROPOSITION 1: Let φ_0 be a local parameterization of the boundary of a convex symmetric body $C(\subseteq \mathbb{R}^n)$. Suppose that

(1)
$$\varphi_0(0) = h,$$

 $(2) d\varphi_0(0) = 0,$

(3)
$$H(0)(x,x) = -k(x_1^2 + \ldots + x_m^2), \quad k > 0, m \le n-1.$$

Define

$$\phi(x) = \varphi_0(x) + \varphi_0(-x)$$
 and $\delta = \frac{1}{2} \int_{[\phi \ge 0]} \phi(x) dx$

Then

$$\frac{h}{\delta^{2/(n+1)}} \le \frac{2}{c_n}^{\frac{n-m-1}{n+1}} k^{\frac{m}{n+1}} \Delta(h)^{\frac{n-m-1}{n+1}} (1+g(h))$$

where \triangle and g are positive functions with $\lim_{h\to 0} \triangle(h) = \lim_{h\to 0} g(h) = 0$. Proof: For $x \in \mathbb{R}^{n-1}$ define

$$x' = (x_1, \ldots, x_m),$$
 $x'' = (x_{m+1}, \ldots, x_{n-1}).$

By the proposition above we get

$$h - \frac{k}{2} \|x'\|_{2}^{2} - \tilde{\bigtriangleup}(\|x\|_{2}) \|x\|_{2}^{2} \leq \varphi_{0}(x) \leq h - \frac{k}{2} \|x'\|_{2}^{2} + \tilde{\bigtriangleup}(\|x\|_{2}) \|x_{2}\|^{2}.$$

Hence

(*)
$$2h - k \|x'\|_2^2 - 2\tilde{\Delta}(\|x\|_2) \|x\|_2^2 \le \phi(x) \le 2h - k \|x'\|_2^2 + 2\tilde{\Delta}(\|x\|_2) \|x\|_2^2.$$

Assuming $\tilde{\Delta}(||x||) \leq \Delta$, it follows that $\phi(x) \geq 0$ whenever

$$(k+2\triangle)||x'||_2^2 + 2\triangle ||x''||_2^2 \le 2h.$$

The equation

$$(k+2\triangle)||x'||_2^2 + 2\triangle||x''||_2^2 \le 2h$$

defines an ellipsoid E in \mathbb{R}^{n-1} with principal axes

$$r = \sqrt{\frac{2h}{k+2\Delta}}, \qquad \qquad R = \sqrt{\frac{h}{\Delta}}.$$

Applying Lemma 9 and the left hand side of (*) we obtain:

$$\begin{split} \delta &= \frac{1}{2} \int\limits_{\phi \ge 0} \phi \ge \int\limits_E h - \left(\frac{k}{2} + \Delta\right) \|x'\|_2^2 - \Delta \|x''\|_2^2 dx \\ &= h \operatorname{Vol} (E) - \left(\frac{k}{2} + \Delta\right) \frac{\operatorname{Vol} E}{n+1} mr^2 - \Delta \frac{\operatorname{Vol} E}{n+1} (n-1-m)R^2 \\ &= h \operatorname{Vol} (E) \left(1 - \frac{m}{n+1} - \frac{n-1-m}{n+1}\right) \\ &= \frac{2}{n+1} h \operatorname{Vol} E. \end{split}$$

Since

Vol
$$E = \left(\frac{2h}{k+2\Delta}\right)^{\frac{m}{2}} \left(\frac{h}{\Delta}\right)^{\frac{n-m-1}{2}} w_{n-1}$$

we get

$$\delta \ge \frac{2^{\frac{m}{2}+1}}{n+1} w_{n-1} h^{\frac{n+1}{2}} (k+2\Delta)^{-\frac{m}{2}} \Delta^{-\frac{n-m-1}{2}}.$$

Hence

$$\frac{h}{\delta^{2/(n+1)}} \le \frac{2^{\frac{n-m-1}{n+1}}}{c_n} k^{\frac{m}{n+1}} \Delta^{\frac{n-m-1}{n+1}} \left(1 + \frac{2\Delta}{k}\right)^{\frac{m}{n+1}}.$$

Vol. 78, 1992

Remark: 1) If m = n - 1 then the same method (just use the right hand side of (*)!) gives the inequality

$$\frac{h}{\delta^{2/(n+1)}} \geq \frac{1}{c_n} k^{\frac{n-1}{n+1}} (1-\widetilde{g}(h)).$$

This shows that $\frac{h}{\delta^{2}/(n+1)}$ converges to zero if m < n-1 and it converges to $c_n^{-1}k^{(n-1)/(n+1)}$ if m = n-1.

2) By considering φ_0 rather than ϕ and setting $\delta = \int_{\substack{\varphi \ge 0 \\ \varphi \ge 0}} \varphi(x) dx$ we obtain the same estimates (up to irrelevant factors). This provides another proof of the result of C. Schütt and E. Werner.

PROPOSITION 2: Let C be a convex symmetric body in \mathbb{R}^n . Then

$$\lim_{\delta \to 0} \int_{\partial C} c_n \delta^{-\frac{2}{n+1}} \langle x - x_{\delta}, N(x) \rangle \, d\lambda(x) = \int_{\partial C} k(x)^{\frac{1}{n+1}} \, d\lambda(x)$$

where k(x) is the generalized Gauss-Kronecker curvature.

Proof: Fix $x \in \partial C$ such that k(x) exists. By Lemma 8 the values at x of the integrands of both sides are invariant under linear transformations T satisfying $||T^{*-1}N(x)||_2 = 1$. Hence we can assume that

$$x \| N(x) \|$$

Applying another affine transformation on the tangent space at Tx of ∂TC we see that we can also assume that the indicatrix of Dupin at x is a spherical cylinder. Now we are in a position to apply the preceding proposition and the remark following it. Corollary 4, Lemma 6 and Lebesgue's dominated convergence theorem imply the proposition.

THEOREM 2: Let C be a convex symmetric body in \mathbb{R}^n . Let V_F be the distribution function of the convolution square of C. Then

$$\lim_{\delta \to 0} \frac{V_F(0) - V_F(\delta)}{\delta^{2/(n+1)}} = \frac{2^{n-\frac{2}{n+1}}}{c_n} S_{aff}(C).$$

Proof: $V_F(0) - V_F(2\delta) = 2^n \left(\operatorname{Vol}_n C - \operatorname{Vol}_n \left(\frac{1}{2} C(2\delta) \right) \right)$. Therefore we get, by Proposition 2 and [S.W],

$$\lim_{\delta \to 0} \frac{V_F(0) - V_F(2\delta)}{\delta^{2/n+1}} = \frac{2^n}{c_n} S_{aff}(C).$$

COROLLARY 5: A convex symmetric body of class C^2 and a polytope never have the same distribution function.

Proof: The affine surface area of a polytope is zero!

Remark: As was pointed out by the referee, the above Theorem holds, if we only assume C to be a convex body; this is because $F(x) = I_C * I_C = \operatorname{Vol}_n (C \cap (x-C))$. Therefore it would be more natural to work with $\widetilde{C}(\delta) := \{x \in \mathbb{R}^n : \operatorname{Vol} C \cap (-C+x) \geq \delta\}$ instead of $C(\delta)$. However, Theorem 1 does not hold for $\widetilde{C}(\delta)$.

As far as we know, the following problem is open: Let V_{F_1} (V_{F_2} respectively) be the distribution function of a polytope P_1 (P_2 resp.) $\subseteq \mathbb{R}^2$. Assume $V_{F_1} = V_{F_2}$. Does this imply that $P_1 = P_2$ up to affine transformation?

Polytopes

In a recent work [Schü] C. Schütt proved the following

THEOREM: Let P be a convex polytope in \mathbb{R}^n with nonempty interior. Then

$$\lim_{\delta \to 0} \frac{\operatorname{Vol}_n(P) - \operatorname{Vol}_n(P_{\delta})}{\delta(\log \frac{1}{\delta})^{n-1}} = \frac{1}{n!} \frac{1}{n^{n-1}} \phi_n(P)$$

where $\phi_n(P)$ is defined as follows:

If n = 1, then $\phi_1(P) = 2$.

If $n \ge 2$, then we choose for every extreme point x of P a hyperplane H_x that separates x from the remaining extreme points and set

$$\phi_n(P) = \sum_{x \in \operatorname{ext}(P)} \phi_{n-1}(P \cap H_x).$$

It turns out that an analogous statement with P_{δ} replaced by $P(\delta)$ holds. The method of proof follows Schütt's method, with some modifications.

LEMMA 11:

(i)
$$Vol_n (0 \le x_j \le 1, \prod_{j=1}^n x_j \le t) = \frac{1}{(n-1)!} \gamma_n (\log \frac{1}{t}), \quad t \le 1,$$

where $\gamma_n(\alpha) = \int_{\alpha}^{\infty} r^{n-1} e^{-r} dr.$ (ii) $t(\log \frac{1}{t})^{n-1} \le \gamma_n(\log \frac{1}{t}) \le t(\log \frac{1}{t})^{n-1} + C(n)t(\log \frac{1}{t})^{n-2} \quad \forall 0 < t \le 1/2.$ Proof: Define

$$f: (\mathbb{R}^+)^n \to (0,1]^n$$
 by
 $t_j \mapsto e^{-t_j}, \quad j = 1, \dots, n.$

Then

$$\left|\det Df(t_1,\ldots,t_n)\right|=\exp(-\sum t_j)$$

and

$$Vol_{n} (0 \le x_{j} \le 1, \Pi x_{j} \le t) = \int_{\sum t_{j} \ge \log \frac{1}{t}} \exp(-\sum t_{j}) dt_{1} \dots dt_{n}$$
$$= 2^{-n} \int_{\|x\|_{1} \ge \log \frac{1}{t}} \exp(-\|x\|_{1}) dx$$
$$= 2^{-n} \int_{\log \frac{1}{t}}^{\infty} \int_{S^{n-1}} r^{n-1} \|\xi\|_{1}^{-n} e^{-r} d\xi dr$$
$$= 2^{-n} N Vol_{n} (B_{n}^{1}) \int_{\log \frac{1}{t}}^{\infty} r^{n-1} e^{-r} dr$$

$$=\frac{1}{(n-1)!}\gamma_n(\log\frac{1}{t}).$$

(ii) Integration by parts gives the formula:

$$\gamma_n(\alpha) = e^{-\alpha} \alpha^{n-1} + (n-1)\gamma_{n-1}(\alpha).$$

Therefore

$$\lim_{\alpha \to \infty} \frac{\gamma_n(\alpha)}{e^{-\alpha} \alpha^{n-1}} = 1 + \lim_{\alpha \to \infty} \frac{n-1}{\alpha} \int_{\alpha}^{\infty} (\frac{t}{\alpha})^{n-2} e^{-t+\alpha} dt$$
$$= 1 + \lim_{\alpha \to \infty} \frac{n-1}{\alpha} \int_{0}^{\infty} (1+\frac{x}{\alpha})^{n-2} e^{-x} dx$$
$$= 1. \qquad \blacksquare$$

As an example, we compute the distribution function of the convolution square of the cube $Q_n = [-\frac{1}{2}, \frac{1}{2}]^n$. It is easy to see that

$$F(x) := I_{Q_n} * I_{Q_n}(x) = \prod_{j=1}^n (1 - |x_j|).$$

Hence

$$V_F(\delta) := \operatorname{Vol}_n (F \ge \delta) = 2^n \operatorname{Vol}_n (0 \le x_j \le 1, \Pi(1-x_j) \ge \delta).$$

Using the transformation

$$f: (\mathbb{R}^+)^n \to [0,1)^n$$
$$t_i \mapsto 1 - e^{-t_i}$$

it is easily checked that

$$V_F(\delta) = \frac{2^n}{(n-1)!} \int_0^{\log \frac{1}{\delta}} r^{n-1} e^{-r} dr.$$

Thus

$$\lim_{\delta \to 0} \frac{V_F(0) - V_F(\delta)}{\delta (\log \frac{1}{\delta})^{n-1}} = \frac{2^n}{(n-1)!}$$

or equivalently

$$\lim_{\delta \to 0} \frac{\operatorname{Vol}_n(Q_n) - \operatorname{Vol}_n\left(\frac{1}{2}Q_n(2\delta)\right)}{\delta(\log \frac{1}{\delta})^{n-1}} = \frac{2}{(n-1)!}$$

which, of course, coincides with the expression in Schütts' theorem when n = 2 $(\phi_n(Q_n) = 2^n n!).$

LEMMA 12: Let S be a simplex in \mathbb{R}^n such that 0 is an extreme point of S. Define

$$\widetilde{S}(2\delta) = \left\{ x \in S : \operatorname{Vol}_n \left(S \cap (-S + 2x) \right) \ge 2\delta \right\}.$$

Then

$$\operatorname{Vol}_{n}\left(S\setminus\widetilde{S}(2\delta)\right) \geq \frac{1}{2^{n-1}(n-1)!}\delta\left(\log\frac{2^{n-1}n!}{n^{n}}\frac{\operatorname{Vol}_{n}(S)}{\delta}\right)^{n-1}$$

Proof: Since $\operatorname{Vol}_n(S \setminus \widetilde{S}(2\delta))$ is invariant under volume preserving linear transformations we may assume that the extreme points of S are given by

 $0, \alpha e_1, \ldots, \alpha e_n$ for some $\alpha > 0$,

where $(e_j)_{j=1}^n$ is the standard unit vector basis of \mathbb{R}^n . In this case the boundary of $\widetilde{S}(2\delta)$ is given by

$$2^n \prod_{j=1}^n x_j - 2\delta = 0.$$

326

Vol. 78, 1992

Now S contains the cube $W = [0, \frac{\alpha}{n}]^n$. Therefore we get, by Lemma 11:

$$\operatorname{Vol}_{n}\left(S\setminus\widetilde{S}(2\delta)\right) \geq \operatorname{Vol}_{n}\left(W\setminus\widetilde{S}(2\delta)\right)$$

$$= \operatorname{Vol}_{n}\left(0 \leq x_{j} \leq \frac{\alpha}{n}, \prod_{j=1}^{n} x_{j} \leq \frac{\delta}{2^{n-1}}\right)$$

$$= \operatorname{Vol}_{n}\left(0 \leq x_{j} \leq 1, \prod_{j=1}^{n} x_{j} \leq (\frac{n}{\alpha})^{n} \frac{\delta}{2^{n-1}}\right) \cdot (\frac{\alpha}{n})^{n}$$

$$\geq (\frac{\alpha}{n})^{n} (\frac{n}{\alpha})^{n} \frac{\delta}{2^{n-1}} \frac{1}{(n-1)!} \left(\log(\frac{\alpha^{n}2^{n-1}}{n^{n}\delta})\right)^{n-1}$$

$$= \frac{1}{2^{n-1}(n-1)!} \delta\left(\log\frac{2^{n-1}n!}{n^{n}} \frac{\operatorname{Vol}_{n}(S)}{\delta}\right)^{n-1}.$$

LEMMA 13: Let S be as in Lemma 12. Then

$$\operatorname{Vol}_{n}\left(S\setminus\widetilde{S}(2\delta)\right) \leq \frac{1}{2^{n-1}(n-1)!}\delta\left(\log\frac{2^{n-1}n!}{n^{n}}\frac{\operatorname{Vol}_{n}(S)}{\delta}\right)^{n-1} + c(n)\delta(\log\frac{1}{\delta})^{n-2}.$$
Buseform We have a sum of the t

Proof: W.l.o.g. we may assume that

$$S = co(0, e_1, \ldots, e_n).$$

By Lemma 11 we get for $W = [0, \frac{1}{n}]^n$

$$\operatorname{Vol}_{n}\left(W\setminus\widetilde{S}(2\delta)\right)\leq\frac{1}{2^{n-1}(n-1)!}\delta\left(\log\frac{2^{n-1}}{n^{n}\delta}\right)^{n-1}+c_{1}(n)\delta\left(\log\frac{1}{\delta}\right)^{n-2}.$$

If $x_n \ge \frac{1}{n}$ is fixed, we get (from Lemma 11):

$$\begin{aligned} & \text{Vol }_{n-1} \left(0 \le x_j \le 1, \sum_{j=1}^{n-1} x_j \le 1 - x_n, \prod_{j=1}^{n-1} x_j \le \frac{\delta}{x_n 2^{n-1}} \right) \\ & \le \text{ Vol }_{n-1} \left(0 \le x_j \le 1 - x_n, j = 1, \dots, n-1, \prod_{j=1}^{n-1} x_j \le \frac{\delta}{x_n 2^{n-1}} \right) \\ & = (1 - x_n)^{n-1} \text{ Vol }_{n-1} \left(0 \le x_j \le 1, \prod_{j=1}^{n-1} x_j \le \frac{\delta}{x_n (1 - x_n)^{n-1} 2^{n-1}} \right) \\ & \le \begin{cases} c_2(n) \frac{\delta}{x_n 2^{n-1}} \left(\log \frac{x_n (1 - x_n)^{n-1} 2^{n-1}}{\delta} \right)^{n-2} & \text{if } \frac{\delta}{x_n (1 - x_n)^{n-1} 2^{n-1}} \le \frac{1}{2} \\ 2^{2-n} n \delta & \text{otherwise} \end{cases} \\ & \le c_3(n) \delta(\log \frac{1}{\delta})^{n-2}. \end{aligned}$$

Therefore

$$\operatorname{Vol}_{n}(S \setminus \widetilde{S}(2\delta)) \leq \frac{1}{2^{n-1}(n-1)!} \delta(\log \frac{2^{n-1}}{n^{n}\delta})^{n-1} + c_{1}(n)\delta(\log \frac{1}{\delta})^{n-2} \\ + n \int_{1/n}^{1} c_{3}(n)\delta(\log \frac{1}{\delta})^{n-2} dt.$$

Remark: Lemmas 12 and 13 essentially state that the volume of $S \setminus \widetilde{S}(2\delta)$ co-incides with that of $W \setminus \widetilde{S}(2\delta)$ up to terms of the order $\delta(\log \frac{1}{\delta})^{n-2}$.

LEMMA 14: Let $0, e_1, \ldots, e_n$ be the vertices of the simplex S, and let H_1 and H_2 be hyperplanes such that

- (i) $0, e_1, \dots, e_{n-2} \in H_1, H_2,$ (ii) $e_{n-1} \in \overset{\frown}{H_1}, e_n \in \overset{\frown}{H_2}.$

Then we have for $W = [0, \frac{1}{n}]^n$ and $0 < \delta < \frac{1}{2n!}$

$$\operatorname{Vol}_{n}\left(\left(W\setminus\widetilde{S}(2\delta)\right)\cap H_{1}^{+}\cap H_{2}^{+}\right)\leq c(n,H_{1},H_{2})\delta(\log\frac{1}{\delta})^{n-2}.$$

Proof: Let the hyperplanes H_1 and H_2 be given by the equations

$$x_n = a_1 x_{n-1} \qquad \text{and} \qquad x_n = a_2 x_{n-1}.$$

Then

$$\begin{aligned} V &:= \operatorname{Vol}_{n} \left(\left(W \setminus \widetilde{S}(2\delta) \right) \cap H_{1}^{+} \cap H_{2}^{+} \right) \\ &= \operatorname{Vol}_{n} \left(0 \leq x_{j} \leq \frac{1}{n}, \prod_{j=1}^{n} x_{j} \leq \frac{\delta}{2^{n-1}}, a_{1}x_{n-1} \leq x_{n} \leq a_{2}x_{n-1} \right) \\ &= n^{-n} \operatorname{Vol}_{n} \left(0 \leq x_{j} \leq 1, \prod_{j=1}^{n} x_{j} \leq \frac{\delta n^{n}}{2^{n-1}}, a_{1}x_{n-1} \leq x_{n} \leq a_{2}x_{n-1} \right) \\ &= n^{-n} \int_{Q} \operatorname{Vol}_{n-2} \left(0 \leq x_{j} \leq 1, j \leq n-2, \prod_{j=1}^{n-2} x_{j} \leq \frac{\delta n^{n}}{2^{n-1}st} \right) d(s,t) \end{aligned}$$

where

$$Q = \{(s,t) \in [0,1]^2 : a_1 s \le t \le a_2 s\}.$$

It is easily checked that the set $\{(s,t) \in Q : \frac{\delta n^n}{2^{n-1}st} \geq \frac{1}{2}\}$ has measure at most $\frac{\delta n^n}{2^{n-2}} \log \sqrt{\frac{a_2}{a_1}}$ and for

$$(s,t) \in Q \ s.t. \ \frac{\delta n^n}{2^{n-1}st} \leq \frac{1}{2}$$

we get by Lemma 11

$$\operatorname{Vol}_{n-2}\left(0 \le x_j \le 1, j \le n-2, \prod^{n-2} x_j \le \frac{\delta n^n}{2^{n-1}st}\right) \qquad \le c_2(n)\frac{\delta}{st}(\log \frac{st}{\delta})^{n-3}$$

Hence

$$V \le c_1(n, a_1, a_2)\delta + \delta c_2(n) \int_{[st \ge \frac{\delta n^n}{2^{n-2}}] \cap Q} \frac{1}{st} (\log \frac{st}{\delta})^{n-3} d(s, t)$$
$$\le c(n, a_1, a_2)\delta (\log \frac{1}{\delta})^{n-2}.$$

Replacing Schütts' Lemmata 1.3 and 1.4 by our 12, 13 and 14 we get the following modification of Lemma 1.5 ([Schü]).

PROPOSITION 3: Let S be the simplex spanned by $x_1 = 0, x_2, \ldots, x_{n+1}$. Assume that S has nonempty interior and let H_1, \ldots, H_n be hyperplanes such that

(*)
$$x_1, \ldots x_{k-1} \in H_k; \quad x_k \in \overset{\circ}{H}_k^+; \quad x_{k+1}, \ldots, x_{n+1} \in \overset{\circ}{H}_k^- \quad k = 1, \ldots, n.$$

Then for sufficiently small $\delta > 0$ we have

$$\frac{1}{2^{n-1}n!(n-1)!}\delta\left(\log\frac{2^{n-1}n!}{n^n}\frac{\operatorname{Vol}_n(S)}{\delta}\right)^{n-1} - c_1\delta\left(\log\frac{1}{\delta}\right)^{n-2}$$

$$\leq \operatorname{Vol}_n\left(\left(S\setminus\widetilde{S}(2\delta)\right)\cap\bigcap_{j=1}^nH_j^+\right)$$

$$\leq \frac{1}{2^{n-1}n!(n-1)!}\delta\left(\log\frac{2^{n-1}n!}{n^n}\frac{\operatorname{Vol}_n(S)}{\delta}\right)^{n-1} + c_2\delta\left(\log\frac{1}{\delta}\right)^{n-2}$$

where c_1 and c_2 depend on n and on the hyperplanes H_1, \ldots, H_n .

The proofs of the following lemmata can be found in [Schü].

LEMMA 15: Let P be a convex symmetric polytope in \mathbb{R}^n . Then there is a family of simplices S_i , T_i $i = 1, ..., \phi_n(P)$ and hyperplanes H_x , $x \in ext(P)$, such that

- (i) $P \cap H_x^- \cap H_y^- = \phi$ if $x \neq y$.
- (ii) $\overset{\circ}{S}_{i} \cap \overset{\circ}{S}_{i} = \phi$ if $i \neq j$ and $T_{i} \supseteq P$ for all i.
- (iii) For every *i* there is $x \in ext(P)$ so that $S_i \subseteq P \cap H_x^-$.
- (iv) For every T_i there are hyperplanes H_{ij} , j = 1, ..., n satisfying (*) of Proposition 3 such that

$$T_i \cap \bigcap_{j=1}^n H_{ij}^+ = S_i.$$

 (\mathbf{v}) For every *i* we have that

 $-T_i \in \{T_k : k = 1, \ldots, \phi_n(P)\}$ and $-S_i \in \{S_k : k = 1, \dots, \phi_n(P)\}.$

LEMMA 16: Let P be as above. Then there is a family of simplices S_i , T_i $i = 1, \ldots, \phi_n(P)$ and hyperplanes H_{ij} $j = 1, \ldots, n+1$ so that

- (i) $\underset{i}{\overset{\circ}{,}} \cap \underset{i}{\overset{\circ}{,}} = \phi \text{ if } i \neq j,$ (ii) $\bigcup^{\phi_n(P)} S_i = P,$ (iii) $\underset{i=1}{\overset{i=1}{\sum}} T_i \subseteq P, i = 1, \dots, \phi_n(P),$ (iv) $\bigcap_{i=1}^{n+1} H_{ij}^+ = S_i, i = 1, \dots, \phi_n(P),$
- (v) $(H_{ij})_{j=1}^n$ satisfies (*) of Proposition 3 with respect to T_i ,
- (vi) $-T_i \in \{T_k : k = 1, ..., \phi(P)\}, -S_i \in \{S_k : k = 1, ..., \phi_n(P)\}$ for all $i=1,\ldots,\phi_n(P).$

THEOREM 3: Let P be a convex symmetric polytope in \mathbb{R}^n with nonempty interior. Then we have

$$\lim_{\delta \to 0} \frac{V_F(0) - V_F(\delta)}{\delta (\log \frac{1}{\delta})^{n-1}} = \frac{1}{n!(n-1)!} \phi_n(P)$$

where F is the convolution square of P and V_F denotes the distribution function of F.

Proof: Clearly the assertion is equivalent to

$$\lim_{\delta\to 0} \frac{\operatorname{Vol}_n\left(P\setminus \frac{1}{2}P(2\delta)\right)}{\delta(\log \frac{1}{\delta})^{n-1}} = \frac{1}{2^{n-1}n!(n-1)!}\phi_n(P).$$

Vol. 78, 1992

Let $S_i, T_i, i = 1, ..., \phi(P)$ be the simplices given by Lemma 15. Since

 $T_i, -T_i \supseteq P$ for all $i = 1, \dots, \phi_n(P)$

it follows that

$$\frac{1}{2}P(2\delta) = \left\{ x \in P : \operatorname{Vol}_n \left(P \cap (P+2x) \right) \ge 2\delta \right\}$$
$$\subseteq \left\{ x \in T_i : \operatorname{Vol}_n \left(T_i \cap (-T_i+2x) \right) \ge 2\delta \right\}$$
$$= \widetilde{T}_i(2\delta) \quad i = 1, \dots, \phi_n(P).$$

Therefore

$$P \setminus \frac{1}{2}P(2\delta) \supseteq P \setminus \bigcap_{i=1}^{\phi_n(P)} \widetilde{T}_i(2\delta)$$
$$\supseteq \bigcup_{j=1}^{\phi_n(P)} S_j \setminus \bigcap_{i=1}^{\phi_n(P)} \widetilde{T}_i(2\delta)$$
$$\supseteq \bigcup_{j=1}^{\phi_n(P)} S_j \setminus \widetilde{T}_j(2\delta)$$
$$= \bigcup_{j=1}^{\phi_n(P)} (T_j \cap \bigcap_{i=1}^n H_{ji}^+) \setminus \widetilde{T}_j(2\delta).$$

Hence

$$\operatorname{Vol}_{n}\left(P\setminus\frac{1}{2}P(2\delta)\right)\geq\sum_{j=1}^{\phi_{n}(P)}\operatorname{Vol}_{n}\left(\left(T_{j}\setminus\widetilde{T}_{j}(2\delta)\right)\cap\bigcap_{i=1}^{n}H_{ji}^{+}\right).$$

We can assume that the only extreme point of T_j which is also an extreme point of P is zero. This follows from the simple observation that

$$\operatorname{Vol}_{n}\left(\widetilde{T}_{j}(2\delta)\right) = \operatorname{Vol}_{n}\left(\widetilde{(T_{j}-x_{0})(2\delta)}\right).$$

By Proposition 3 (using the right hand side inequality) we have the estimate

$$\operatorname{Vol}_n\left(P \setminus \frac{1}{2}P(2\delta)\right) \ge \frac{1}{2^{n-1}n!(n-1)!} \phi_n(P)\delta\left(\log\frac{2^{n-1}n!}{n^n}\frac{\min_j \operatorname{Vol}_n\left(T_j\right)}{\delta}\right)^{n-1} - c(n,P)\delta(\log\frac{1}{\delta})^{n-2}.$$

Since

$$\lim_{\delta \to 0} \frac{\log \frac{c}{\delta}}{\log \frac{1}{\delta}} = 1 \quad \text{ for all } c > 0$$

we get the desired estimate from below. Using Lemma 16 instead of Lemma 15 we get the same estimate from above. Indeed, let S_i , T_i , $i = 1, \ldots, \phi_n(P)$ be the simplices given by Lemma 16, then

$$T_i, -T_i \subseteq P \qquad \forall i = 1, \dots, \phi_n(P).$$

Thus

$$\frac{1}{2}P(2\delta) \supseteq \widetilde{T}_i(2\delta) \qquad \forall i = 1, \dots, \phi_n(P).$$

We conclude that

.

$$P \setminus \frac{1}{2} P(2\delta) \subseteq P \setminus \bigcup_{i=1}^{\phi_n(P)} \widetilde{T}_i(2\delta)$$
$$= \bigcup_{j=1}^{\phi_n(P)} S_j \setminus \bigcup_{i=1}^{\phi_n(P)} \widetilde{T}_i(2\delta)$$
$$\subseteq \bigcup_{j=1}^{\phi_n(P)} S_j \setminus \widetilde{T}_j(2\delta)$$
$$= \bigcup_{j=1}^{\phi_n(P)} (T_j \cap \bigcap_{i=1}^{n+1} H_{ji}^+) \setminus \widetilde{T}_j(2\delta),$$
$$\subseteq \bigcup_{j=1}^{\phi_n(P)} (T_j \cap \bigcap_{i=1}^n H_{ji}^+) \setminus \widetilde{T}_j(2\delta),$$

therefore we obtain by Proposition 3

$$\operatorname{Vol}_{n}\left(P \setminus \frac{1}{2}P(2\delta)\right) \leq \sum_{j=1}^{\phi_{n}(P)} \operatorname{Vol}_{n}\left(\left(T_{j} \setminus \widetilde{T}_{j}(2\delta)\right) \cap \bigcap_{i=1}^{n} H_{ji}^{+}\right)$$
$$\leq \frac{1}{2^{n-1}n!(n-1)!} \phi_{n}(P)\delta\left(\log \frac{2^{n-1}n!}{n^{n}} \frac{\max}{\delta} \operatorname{Vol}_{n}\left(T_{j}\right)\right)^{n-1}$$
$$+ c(n, P)\delta(\log \frac{1}{\delta})^{n-2}.$$

332

Remark: It is easy to check that Theorem 3 also holds in the non-symmetric case.

From Theorem 3 and Corollary 2 we immediately get

COROLLARY 6: Let P be a convex symmetric polytope in \mathbb{R}^2 , then the distribution function of the convolution square of P determines

- (i) Vol $_{2}(P)$,
- (ii) Vol $_2(P^*)$,
- (iii) the number of extreme points of P.

COROLLARY 7:

- (i) Let C be a convex symmetric body in \mathbb{R}^2 such that the distribution function of the convolution square of C is equal to the distribution function of the convolution square of $[-1,1]^2$. Then C is an affine image of $[-1,1]^2$.
- (ii) If C is a convex body in \mathbb{R}^n such that the distribution function of the convolution square is equal to that of the n-dimensional simplex. Then C is an affine image of the simplex.

Actually (i) and (ii) of Corollary 6 imply that C is an affine image of $[-1, 1]^2$, for these are the only convex symmetric bodies that minimize

Vol
$$_2(P)$$
 · Vol $_2(P^*)$.

The second assertion of the corollary follows from the fact that for all *n*-dimensional polytopes $P \ \phi_n(P) \ge (n+1)!$ with equality iff P is a simplex.

Remarks: It follows from a theorem of Rogers and Shephard that the simplex in \mathbb{R}^n is also determined by the distribution function of $G = I_C * I_{-C}$. This is because the simplex is the only convex body C in \mathbb{R}^n satisfying

$$\operatorname{Vol}_{n}(C \cap (C+x)) = (1 - ||x||_{S(C)})^{n} \operatorname{Vol}_{n} C$$

where S(C) = (C - C), i.e. such that equality holds in Lemma 10 (i).

Using the above identity the function G associated with the simplex S can be easily computed:

$$G(x) = (1 - ||x||_{S-S})^n \operatorname{Vol}_n(S).$$

Therefore the distribution function of G is given by

$$V_{G}(\delta) = \left(1 - \left(\frac{\delta}{\operatorname{Vol}_{n}(S)}\right)^{1/n}\right)^{n} \binom{2n}{n} \operatorname{Vol}_{n}(S)$$

and $V_G(0) - V_G(\delta)$ does not behave like $\delta(\log \frac{1}{\delta})^{n-1}$ as δ tends to zero. However, Theorem 1 provides a tool to determine the polar of the projection body P_S^* of a simplex S:

$$\|x\|_{P_{S}^{*}} = \lim_{t \to 0} \frac{F(0) - F(tx)}{t}$$
$$= n \|x\|_{S-S} \operatorname{Vol}_{n}(S).$$

Hence

$$P_S^* = \frac{1}{n \operatorname{Vol}_n(S)}(S-S).$$

References

- [Ban] V. Bangert, Analytische Eigenschaften konvexer Funktionen auf Riemannschem Mannigfaltigkeiten, J. Reine Angew. Math. 307 (1979), 309-324.
- [B.L] I. Barany and D. G. Larman, Convex bodies, economic cap coverings, random polytopes, Mathematika 35 (1988), 274-291.
- [G.M] M. Gromov and V. D. Milman, Brunn theorem and a concentration of volume phenomenon for convex bodies, GAFA 1983-1984
- [K] K. Keiner, Extremailtät von Ellipsoiden und die Faltungsungleichung von Sobolev, Arch. Math 46 (1986), 162–168.
- [L] K. Leichtweiß, Zur Affinoberfläche konvexer Körper, Manuscripta Mathematica 56 (1986), 429-464.
- [Lu] E. Lutwak, Extended affine surface area, preprint
- [M] A. M. Macbeath, A theorem on non-homogeneous lattices, Annals of Math. 56 (1952), 269-293.
- [M.P] V. D. Milman and A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space, GAFA 87-88, Springer LNM 1376, 64-104
- [M.R] M. Meyer and S. Reisner, A geometric property of the boundary of symmetric convex bodies and convexity of floatation surfaces, Geom. Ded. 37 (1991), 327– 337.
- R. Schneider, Boundary structure and curvature of convex bodies, Proc. Geom. Symp. Siegen 1978, ed. by J. Tölke and J. Wills, 13-59
- [S.W] C. Schütt and E. Werner, The convex floating body, Math. Scand. 66 (1990), 275-290.
- [Schü] C. Schütt, The convex floating body and polyhedral approximation, Israel J. Math. 73 (1991), 65-77