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A B S T R A C T  

By analyzing the distribution function of the convolution square of a convex 

and symmetric body we obtain some affine invariants related to the body. 

These invariants have a geometric interpretation. 

I n t r o d u c t i o n  a n d  n o t a t i o n s  

The start ing point of our investigation is a paper  of K. Kiener [K]. Before we 

explain his results we have to introduce some notation. Let C be a convex body 

in R" (i.e. C is a compact convex subset of R" with non-empty interior). By Ic  

we denote the indicator function of C; the convolution square of C is defined by 

F = Ic  * Ic  (we will also investigate the function G = I c  * f - c  which in the case 

of a symmetric body coincides with F).  The distribution function of F is given 

by 

VF(,5) = Vol ,~ ( IF > 81) = Vol ,  ({x E R " :  F(x)  > ,5} 

where Vol n denotes the n-dimensional Lebesgue measure. By a volume preserv- 

ing linear transformation we mean a linear isomorphism T : R n ~ R n such that  

d e t T =  1. In [K] Kiener proved the following theorem: 

Let C be a convex body in R n. Choose a > 0 such that  Vo ln (C)  = 

Vol ,  (aBe)  (where B~ denotes the euclidean ball of radius 1). If the distri- 

bution function of the convolution square coincides with that  of aB~ then C is 

an ellipsoid, i.e. C is an image of a B  2 under a volume preserving linear trans- 

formation. 
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A crucial point in proving this theorem was the following formula 

lim V£(5) = Vol,  (P*) 
6 -  V o l .  ¢c) ( V o l .  ( c )  - ~)" 

where VF denotes as above the distribution function of the convolution square 

of C and P* denotes the polar of the projection body of C. We deduce this 

formula from an exponential bound for the convolution square. We also analyze 

the behavior of VF(~) for symmetric convex bodies as ~ tends to zero. It turns 

out that there is an analogy between certain bodies associated with the convolu- 

tion square of a convex symmetric body and the so-called floating bodies. The 

corresponding results for the floating bodies were obtained by V.D. Milman and 

M. Gromov [G.M], C. Schfitt and E. Werner [S.W] and C. Schiitt IS]. 

I would like to thank K. Kiener for his encouragement and the referee for the 

many suggestions, corrections and remarks, which clarified the subject. 

T h e  c o n v o l u t i o n  s q u a r e  

Let C be a convex symmetric body in R 2 and let prlC = [-c,c] denote the 

projection of C to the first coordinate. Define 

f : [ - c , c ] ~ R  by f(x)=sup{y:(x,y)EC}. 

Then f is concave and 

c = {(x,y) e R~:x  e [-c, 4, - f ( - ~ )  < v _< f(~)}. 

For A _> 0 set 

• : =  _> O: S(x)) OCn (OC + 

LEMMA 1: Let A, A0 _> O, A + A0 < 2f(0). Then 

0 < XXo - zx0+x _< A XXo 
2f(0) - A0" 

Proof: For t > O, xt satisfies the equation 

f (x , )  = - f ( - x , )  + t. 

Since the function F(x) := f(x) + f(-x) is concave and symmetric, the right 

hand side follows immediately. The left hand side of the inequality follows from 

the fact that F is decreasing on [0, c]. | 
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LEMMA 2: Let C be a convex symmetric body in R". For xo E S "-1 let A, Ao >_ 0 

be such that ,X + ,~o _< 2/llxollc. Let a(C, xo) denote the (n - 1)-dimensionM 

volume of the projection of C to the hyperplane orthogonal to xo. Then we have: 

Vol. C n (C + AoXo) - Vol. C n (C + (A + Ao)xo) 

> ~ ( C  0 (C + ~o~o), ~o) - ~c(~o,  ~o) 

wherec(Ao,xo)= "- '  a (Co(C+Aoxo) , xo )  andM ' 2M--A0 -- Ibtol~c " 

Proof" We obviously have 

Vol , ,Cn(C+Aoxo)-  Vol , ,Cn(C+(A+Ao)xo)  >_ Aa(Cn(C+(A+Ao)Xo) ,Xo) .  

The Quermafl on the right hand side can be computed by the formula 

1 / 
o = 

n - -  1 
Sn-2 

where xt(~) has the previously defined meaning with respect to the 2-dimensionM 

slice 

C n sp n 

According to Lemma 1 and Bernoulli's inequality we get 

' / (  XXoL~ ! 
n - 1 2M - Ao ] d~ 

S. -2  

( A > a ( g a ( g + A o x o ) , x o )  1 -  2 M - A 0  ,]" 

The purpose of the following observations is to improve the right hand estimate 

of the preceding Lemma. By C~.~0 we denote the convex body C Cl (C + Ax0). 
| 

LEMMA 3: Let C be a convex body in N n. Then the one parameter family 

A ~-* C~.zo is concave for ali xo E S "-1. 

Proof: It is easy to show that for a, fl > 0, a + fl = 1 

C~.+~.,~o ~_ aCt,~o + flC.,~o. 1 
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LEMMA 4: Let C be a convex symmetric  body in R n with volume 1. For Xo E 

,9 n-I  define 

¢,0(t)  = Vol,,(c,.,o). 

Then/ 'or M1 t E R 

¢~o(t) < exp(-I t l~(C,  x0)). 

Proof." W.l.o.g. we may assume that t > 0. By Lemma 3 and the theorem of 

Brunn the function 
1In t ~ ¢~ o (t) 

is concave. Hence for all ~ E [0, 1] 

tz0(At) > ((1 - ,~)¢,0(0) ' /n  + .Xtxo(t) ' ln) n 

= (1 - ~ + ~¢xo(t) ' /")" 

> (1+ A(l+ 11og¢,o(t) - 1))" 

= (1 + ~ l o g ¢ . 0 ( t ) ) " .  

Since the inequality is trivial for ¢~0(t) = 0, we suppose that tx0(t)  > 0 and 

choose ~ > 0 so that 

logC~o(t ) >_ -1 .  
n 

Under these assumptions we get using Bernoulli's inequality 

¢~0(~t) ___ 1 + ~logC,0(t) .  

On the other hand we get from Lemma 2 

Hence 

¢~0(~t)  _< 1 - : , t~ (C ,  x o ) ( 1  - ~tc(x0)) .  

log ¢,0(t)  _< -t~(c, =0)(1 - ~tc(=0)). 
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Since this inequality holds for all A sufficiently close to zero, we can take A to be 

0. Thus 

¢ - o ( 0  -< exp(-t,,(C, Xo)). 

Remark: The same proof yields the inequality 

¢ , o ( t + t o ) < ¢ , o ( t o ) e x p \  ¢,o(to)  ] 

which is valid for an arbi trary convex symmetric  body C. Put t ing  all together 

we get the following 

COROLLARY 1: Let C be a convex symmetric body in R n. Then for aU x E S n-1 

and Ml t >_ O 

~(c,~)  ¢,(t) / ~(c ,~)  
1 - t  < < e x p ~ - t ~ ~  

VoI~ (C) - V o l .  ( C )  - \ V o l n  C ] 

equivalently, for MI z E R ' :  

IMIp. ¢(x) IMIP" ) 
1 Voln (c )  < Voln (c)  < exp( - - V o l .  ( C )  

where G denotes the convolution Iv * I - c  and P* the polar of the projection 

body of C. 

Remark: The corollary remains true if we only assume C to be a convex body. 

This is because Lemma 2 is true in ~his context up to another factor c(x), whose 

explicit value is not relevant in the proof of Lemma 4 - it suffices that  it be 

positive. II 

We are now going to apply Corollary 1 to the convolution square of a convex 

(symmetric)  body. 

THEOREM 1: Let C be a convex symmetric body in ~n with volume 1 and set 

c(~) = {x e R": yol c n ( c  + ~) >_ ~} (o < ~ < 1). 

Then C(6) is a convex symmetric body and 

( 1 - 5 ) P *  C_ C(~) C_ log(~)P*.  
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Proof: The first assertion, which was already proved in [M], follows from the 

Brunn-Minkowski inequality and the fact that 

(1 - x ) ( c n  (c  + ~)) +;~(cn(c+v)) c_ cn (c+(t -~),+~v). 

• 1 we have Now let x be in S "-1 Then for p(x) := Ilzllc(~) 

Vol ,  c n ( c  + p(~)x) = 5. 

By Corollary 1 we get for t = p(x) 

1 - a(C,x)p(x) < 6 < exp(-p(x)cr(C,x)) 

1 
*=~llxllc(~)(1 - 5) < ~ ( c ,  x) < log ~lNIc(~).  

This is the desired inequality for the associated norms. | 

COROLLARY 2: Let x be in S n-l,  t > 0 and F(tx) = Cz(t) the convolution 

square of a convex symmetric body C with volume 1. Let P* be the polar of the 

projection body of C and VF(6) := Vol, (IF > 5]), the distribution function of 

F. Then 
1 , p , .  

(1 - 5)" Vol .  P* < VF(~) < (log ~) Vol. 

Taking the limit as 6 --~ 1 we get the above mentioned theorem of Kiener: 

VF(~) 
lira (i'--~'))" = V o l , P * .  
~---*1 

In fact we get something more: 

COROLLARY 3 : ] i ~ ( 1  - 6 ) - 'C (6 )  = P* in the Hausdorff-metric. 

T h e  affine sur face  area  

We next recall the notion of the floating body, more exactly the convex floating 

body of a convex body C. Both concepts coincide in the case of a convex sym- 

metric body C as was proved independently by K. Ball (unpublished) and by M. 

Meyer and S. Reisner [M.S]. We repeat the definition of [S.W]. 
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Definition: The convex floating body Cs of a convex body C in R" is the in- 

tersection of all halfspaces whose defining hyperplanes cut off a set of volume 6 

from the set C. If A denotes the set of all pairs (x,t) • R" × R such that  

then 

Vol.  {y • c :  (y,x) > t} = 6 

c,= N 
(z3)EA 

Cromov and M i l m ~  [G.M] (see also [M.P]) proved that for any convex sym- 
metric body C in R" the floating body C~ is isomorphic to the Legendre Ellip- 

soid L(C) and the constant of isomorphism does not depend on n (i.e. for all 

0 < 6 < Vol ,  (C) /2  there exists a constant c(6) such that c (6) - IL(C)  C_ C~ C 

c(6)L(C)). The proof depends on a concentration property which plays the same 

role as Lemma 4 in the proof of Theorem 1. Actually Lemma 4 was proved in 

the spirit of this concentration property. 

Our next aim is to set up an analogy (of. [B.L] for both concepts) between the 

convex floating bodies C~ and the bodies C(6) by showing that the affine surface 

area of a convex and symmetric body C can also be defined via the distribution 

function of the convolution square of C. However, we need some definitions, 

lemmata and classical results. 

Definition: The affine surface area of a convex body C in R n is defined by 

Vol .  C - Vol .  C6 Sa. (C)  = Lmo . 

where 

= 2 t ' ' " - '  ~ ~ 
c n  \ n + l )  ' 

where the symbol Wn denotes the volume of the unit ball B2n of 12n . | 

For x • OC, the outer normal N(x), HN(x)H2 = 1, exists almost everywhere. 

If A(x, 6) denotes the width of the slice 

of volume 6, then, as was shown in [S.W], the affine surface area can be computed 

as an integral 
v / \ (z ,6)  

l i m c .  &ss(C) = ] ~-.o 62/(,+1) d,X(x) 
* $  

OC 
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where ~ is the Lebesgue measure on OC. 

By the formula of Schiitt and Werner we obtain for the affine surface area of 

a Euclidean ball of radius r. 

For the various definitions of the affine surface area we refer to [L], [Lu]. Also, in  a 

very recent preprint C. Schiitt proved that all of these definitions are equivalent. 

For the proofs of the next three lemmata we refer to [S.W]. 

LEMMA 5: Let C1 and C2 be convex bodies in R n such that 0 is an interior point 

of C2 and C2 C C1. Then 

VolnC1- VoI,,C2 = In f ( z , N ( z ) } ( 1 -  \(llz'llz'~"~llxll2 ] ] d,~(z) 

aCt 

where z E 0C1 and x' E 0C2 is such that z' lies on the line [0, x]. 

Remark: It is easy to see that whenever 

= lim 6-;'~'r(x - x', N(x))  l im6---~r(x,N(z))l lx-z ' l [=llzlE~ 1 ~-.o 
a-=+O 

exists, then 
{llx,ll2~n ~ 

1-~-~-~-r(x,N(x)) 1 - ~ Ilxl12 / / lim 
~==+0 n 

also exists and both limits coincide (we assume that x' converges to x as 

converges to zero). | 

LEMMA 6: Let C be a convex body in R n. For every x E OC let r(x) be the 

radius of the largest Euclidean bedl that is contained in C and that contains x. 

Then for all a with 0 < a < 1 

f r(x) -~ d~(x) < ~.  
OC 

LEMMA 7: Let B,,(r, h) be a cap of a Euclidean ball with radius r and height 

h in R". Then there is a continuous function g with Jin~ g(t) = ~ so that for 

0 < h K r  
[ h ~ n + l  W n - 1  "+1 n - I  

VolnB2n(r,h)=g(r ) - ~ h  ' r-T-. 
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LEMMA 8: Let C be a convex body in R n, xo E OC, 0 E C. 

(i) I f T  is a linear isomorphism and N(xo ) is the normM at xo, then T *-1 N(xo ) 

is a normal at Txo. 

(ii) There exists a linear volume preserving transformation T such that Txo and 

T *-1N(xo) are collinear and Ii T*-lN(~0)lb = 1. Moreover, this transfor- 

mation does not affect the Gauss-Kronecker curvature (if it exists) of C at 

x0, i.e. kTc(Txo) = kc(zo).  

(iii) I f T  : R n ~ R n is a linear volume preserving transformation, then (TC)(8) 

= T(C(6)).  

Proof: The proofs are straightforward. | 

LEMMA 9: Let E be the ellipsoid 

x E R n : \ r i  ~ _ 

i=1  

Then 

Proof." 

f = Vol.___ E d 
E i=1 n + 2  i=l 

(1 < r e < n ) .  

Define T : R" ~ R" by ei ~ riei. Then TB~ = E and 

E B~ B~ 

2 Vol. E _ _ i  Vol. B2.. 
= r /  Vol .  B .  n + 2 

Hence 
f " V o l , E / x - ~  2~ . . . . .  

,=,  . + 2  

Now recall the definitions of C(~) and C~. Let x be in ½0C(2df) and let K(x )  = 

C n (C + 2x). Then K(x)  is symmetric with respect to x. Hence every hyperplane 

H passing through x cuts off a subset of volume ½ Vol ,  K ( z )  (= ~) from the set 

K(x) .  Since g ( x )  C_ C we get 

Vol. (c  n H+) _> ,~. 
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Therefore (cf. [B.L] ) 

1C(25) C C~. 

In case n = 2, it turns out that both bodies coincide: Let xl be in OCA(OC+2x) 

but distinct from x. Then there exists a line g passing through both z and Xl 

and cutting off a segment of area 6 from C. Since x is the barycenter of C n g 

(here we use the symmetry of C), x must be in 0C6. 

In the general case the next Lemma is important (compare [S.W.] Lemma 6). 

LEMMA 10: Let C be a convex symmetric body in Rn, x E OC. Let x6 be the 

unique element with 2x6 E 0C(2~) and x6 e [O,x]. Then we have the following 

estimates: 

(i) Vol.  C C I ( C + 2 x 6 )  >_ (1 - 11=611c)" Vol. C. 

(ii) Vol. CCl(-C+2x6)> (11=-~112'~" 
\ 11=112 ] '~-"~"" 

(iii) If I1=- x611= < ~,'(=) then 

17oi ,, C n ( - C  + 2=6) >_ 2 Vol ,, B .  r(x), 2 ~ " 

(~ (~) and (iii) we ~s , ,me that ,~-~ B~ C_ C C_ ~B~.. Both statements still hold 

in the non-symmetric case.) 

Proof: 

(i) It is easy to check 

C Cl ( C  + 2x6)  - x6 __D (1 - 11=611c)C. 

(ii) Define 

Then 

K = co(x, l B , )  C_ C. 

K O ( - K + 2 x 6 )  C_ C n ( C + 2 x 6 )  and 

Vol. (g  n ( - g  + 2x,)) > [llx :~11~" 
\ 11=112 ] ~-"w.. 
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(iii) From tile figure below it follows that 

t2 = II- - , s l l ~  + ~ ( , ) 2  _ 2,'(=)11= - =6112 ¢osO,  

c o s O  = < - , N ( - ) ) l l x l l ~ '  >_ , ~ -2 .  

Assuming 1 < v ( z ) ,  which is true when r(x)  > 0 and IIx - xsllz is small  enough,  

we get 
h ( r ( z )  + l) = ( r ( z )  - l)(r(z) + l)  = r 2 ( z )  - 12 

we conclude that  

= - I I -  - -611~ + 211~ - - 6 1 i ~ ( ~ )  c o s  0; 
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COROLLARY 4: Let C be a convex symmetric body in R n. 

with r (z )  > 0 
2 

8- . -vr(x  - x , , N ( x ) )  <_ cr(x) '  :+ :  

where c is a constant depending only on C and n. 

Proof." $-w~4"r(x - x s , N ( x ) )  <_ 6---~' IIx - zsll , .  

If  Ilz - xsl[2 > l:rr(x) we get by L e m m a  10 (ii): 

Then for all x E c9C 

_ ll -x, ll-. 

Hence 

II~ - ~sl12 ~-~%r ~ c211x - x611a2 - ' - ~ r  ~ e3~(~)  Z•:. 

If  [Ix - ~all2 _< ~ r ( x )  then it follows from Lemma 7 and L e m m a  I0  (iii) tha t  

B_r(x),2( J] 
6: Vol. 

___ c ,  llx - ~ a l h  r ( z )  , . 

Now we get 

IIx - ~112~  - ~--~+-r ~ csIIx - x s l l : ' r ( ~ ) - ~ ' ~  IIx - x6112 

n - i  
= c ~ , - ( ~ ) -  ~ .  

II 

Definition: Let q; : U ~ R be a convex function on an open convex subset U of 

R".  We say that  q~ is twice differentiable (in a generalized sense) at x0 E U if 

there exists a linear map  d2~(x0) : R"  ~ R'* so that  for all x in a ne ighborhood 

U(xo) of z0 and all subdifferentials d~(x) 

IId~(x)  - d ~ ( x o )  - d 2 ~ ( x o ) ( X  - xo)l12 ~ A ( t l x  - x0112)llx - x0112 

where A : R + --, R + is a non-decreasing function with lim A( t )  = 0 (cf. [Ban], 
t ---*0 

[s]) .  t 

THEOREM (Aleksandrov):  ~p is a.e. twice differentiable. 

For a proof  see [Ban]. 
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PROPOSITION: 

~orm (i.e. H ( ~ o ) ( u , . )  > 0) and 

CONVEX SYMMETRIC BODY 321 

The Hessian H(xo)(U, v) := ( d2 %o( xo )u, v) is a positive symmetric 

I~(~) - ~ (~o) -d~(~o) (~  - ~o) - ~-H(xo)(~ - ~ 0 , x  -x0 ) l  

< £( l lx  - ~011~)llx - ~o11] 

for all x in a neighborhood U ( xo ). 

See [Ban] p. 321. 

Using a properly chosen translation and a rotation we may assume that  the 

boundary of a convex body C is given locally by 

x ,  = ~ ( ~ I , . . . , ~ , - I ) ,  

that 0 E OC and that d~(0) = 0. 

Geometrically the above proposition says that the projection of 

 (oc n [xo = hl) 

to the subspace orthogonal to (0 , . . . , 0 ,  1) converges radially to {u E R n-1 • 

H(O)(u, u) = 1}. The latter quadratic form is called the indicatrix of Dupin. 

We now have all ingredients required for the proof of the following 

PROPOSITION 1: Let ~o be a local parameterization of the boundary of a convex 

symmetric body C( C_ R"). Suppose that 

(1) ~ 0 ( o ) = h ,  

(2) d ~ 0 ( o ) = o ,  

(3) H ( 0 ) ( ~ , ~ ) = - k ( ~ + . . . + ~ ) ,  k > O , m < n - 1 .  

Define 

Then 

¢(x) = ~0(x) + ~ o ( - x )  and 

n - - r n - - I  

h 2 .+l 
~2/(,+1) - c ,  

1 / ¢(x)dx 
[¢>01 

k --~-r A ( h ) ~  (1 + g(h)) 
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where A and g are posit ive functions with ,--,olim A(h) = lira g(h) = 0. 

Proof." For x E R n-1 define 

x' = ( x , , . . .  ,~m), x" = (Xm+, , . . . ,  ~.-,). 

By the proposition above we get 

h -  ~llx'll] - A(II~II2)II~II~ -< ~0(x) _< h -  ~11~'11] + A(llxll2)llx2112- 

Hence 

(.)  2h - kllx'll~ - 2h(llxll2)llxll] ___ 4(x) < 2 h  - kll~'ll~ + 2A(llxll2)llxll]. 

Assuming A(llxll ) < A, it follows that ¢(z) > 0 whenever 

(k + 2ZX)llx'lt] ,, 2 +2AIIw 115 < 2h. 

The equation 

(k + 2a)ll~'ll] + 2allx"ll] _< 2h 
defines an ellipsoid E in R n-1 with principal axes 

r =  k + 2 A '  R =  . 

Applying Lemma-9 and the left hand side of (*) we obtain: 

x f ¢_> f h -  ~+(_k A)ilz,,, ~ - ZXllz"ll~ & 
÷>_o E 

Since 

we get 

Hence 

_ ^ ~  V o l  E 2 V o l  E 
= h Vol ( E ) -  (k_t. ~ ) ~ - - ~ m r  - An+l_n--'-'7-7".. ( - 1 - m ) R  2 

= h  Vol (E)(1 m n - l -  m )  

2 
- h V o l  E .  

n + l  

Vol E = \ ~ 1  \ -~]  Wn_ 1 

2-~+~ 
6 > - -  

- n + l  
m 

w n - l h  2 (k + 2 A ) - v / X  n-~-l .  

h 
~ 1 ( . + 1 )  - 

n - - r n - - 1  ~rt 

Cn 
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Remark:  l)  If m - n - 1 then the same method (just use the right hand side 

of ( , )!)  gives the inequality 

h 1 . - ,  
~2/( .+ , )  >- - k ~  (1 - y(h)) .  

Cn 

This shows that  h converges to zero if m < n - 1 and it converges to 

c'glk ("-1)/("+1) if m = n - 1. 

2) By considering ~0 rather  than ¢ and setting ~ = f ~(x) dx we obtain the 
~_>0 

same estimates (up to irrelevant factors). This provides another  proof of the 

result of C. Schfitt and E. Werner. | 

PROPOSITION 2: Let C be a convex symmetric body in R". Then 

[ c.6-~-~'r (x - x , ,N(x ) )  dA(x) = [ k(x)~-~'r dA(x) lira 
6- -0  J 

aC OC 

where k( x) is the generalized Gauss-Kronecker curvature. 

Proof: Fix x E OC such that  k(x) exists. By Lemma 8 the values at x of the 

integrands of both  sides are invariant under linear transformations T satisfying 

][T*-IN(x)][2 = 1. Hence we can assume that  

xllN(x). 

Applying another  affine transformation on the tangent space at Tx of OTC we see 

that  we can also assume that  the indicatrix of Dupin at x is a spherical cylinder. 

Now we are in a position to apply the preceding proposition and the remark fol- 

lowing it. Corollary 4, Lemma 6 and Lebesgue's dominated convergence theorem 

imply the proposition. | 

THEOREM 2: Let C be a convex symmetric body in R". Let V F be the distribu- 

tion function of the convolution square of C. Then 

Vv(O) - VF(~) 2" A ,  
lira 62/(,+1) - - -  S . I :  (C). 
6 ~ 0  C n 

/ 
P~oof: v r ( o )  - VF(2~) = 2 ~ ( V o l .  c 

Proposit ion 2 and [S.W], 

Voln (½C(2/~))). Therefore we get, by 

lira VF(O)-- VF(2~) 2 ~ 
~--.o ~2/.+i - c. S~H (C). II 
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COROLLARY 5: A convex symmetric body of class C 2 and a polytope never have 

the same distribution function. 

Proof: The affine surface area of a polytope is zero! | 

Remark: As was pointed out by the referee, the above Theorem holds, if we on.~y 

assume C to be a convex body; this is because F(x) = I c * I c  = Vol n (ON(x-C).  

Therefore it would be more natural to work with C(6) := {x E R n : Vol C fl 

( - C  + x) _> 8} instead of C(8). However, Theorem 1 does not hold for C(8). 

As far as we know, the following problem is open: Let VEt (VF2 respectively) 

be the distribution function of a polytope P1 (P2 resp.)C_ R 2. Assmne VF1 = VF2. 

D,~e~ this imply that P1 = P2 up to affine transformation? | 

~ ,~ly topes  

In a recent work [Schii] C. Schiitt proved the following 

THEOREM: Let P be a convex polytope in R n with nonempty interior. Then 

V o l n ( P ) -  V o I . ( P 6 ) _  1 1 
lim ~)n--1 n! $n(P) 
6--,0 6 ( l o g  n " - a  

where ¢ , ( P )  is defined as follows: 

If n = 1, then ¢1(P) = 2. 

If n >_ 2, then we choose for every extreme point x of P a hyperplane Hx that 

separates x from the remaining extreme points and set 

¢ . ( P )  = ~ ¢ . _ , ( P  n Hx). 
zEext  (P) 

It turns out that an analogous statement with P~ replaced by P(6) holds. The 

method of proof follows Sehfitt's method, with some modifications. 

LEMMA 11: 

" 1 Io 1 (i) Vo1,(O<_xj<_l, H x j < _ t ) = ( n _ l ) ! 7 ,  ( g ~ ) ,  t _< l ,  
/=1 

OO 

where 7n(a) = f r n - l e  - r  dr. 
Ot 

lo 1 (ii) t(log 1) "-1 < 3'.( g ~-) < t(log ~) . -1  + C(n)t(log 1) "-2 VO < t < 1/2. 
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Proof: 

Then 

and 

Define 
f :  (R+)" ~ (0,11" by 

tj ~--* e -tj ,  j = l , . . . , n .  

Idet D f ( t ~ ,  . . .  , t . )  I = exp(-- E tj) 

t 

. (0 < zj < 1, Ilzj _< t) = ] exp(- E t j ) d h . . . ,  Vol dt,  

f 
= 2-" ] exp(-II=ll,)d= 

q , O  

llxlh >log 

OO 

-2 . / /  
log t t S n -  1 

, -"-~ I I~I I?"~ -~  d~dr 

O O  

= 2 - " .  V o l . ( B ' . )  ] r"-'~-'dr 
log ~ 

1 1 
= (n _ l)!-y.(log 7). 

(ii) Integration by parts gives the formula: 

Therefore 

"r.(~) = ~ -~ ,~" - '  + ( -  - 1 )~ ._ , (~ ) .  

lim 7"(a) 
a-.~oo e--aOl n-1 

O O  

= 1 +  lira ~n-1  [ ( t  
0-*00 a J ~ ) " - 2 e - t + a  dt  

Ot 

OO 

= 1 + ~--.oolim ~ n  a- 1 / ( 1  + x--)"-~e-Xa dx 
0 

= 1 .  | 

As an example, we compute the distribution function of the convolution square 
r 1 lln It is easy to see that of the cube Q, = t -~,  ~J • 

n 

F ( x )  := [Q. • I ~ . ( x )  = l ' I (1  - Ixjl). 
j=1 
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Hence 

VF(,S) := Vol.  (F  _> 6) = 2" Vol.  (0 _< xj _< 1,11(1 - x#)  >_ 6). 

Using the transformation 

it is easily checked that 

Thus 

or equivalently 

f :  (R+)" ~ [0,1)" 

t j  ~ 1 - e -t~ 

VF(~) = 

log 
2" 

(n--- 1)[ / rn - l e - rdr"  

0 

lim VF(O) - VF(5) _ 2" 
, - .o ~Oog } ) " - '  (n - x)! 

lim Vol.  (Q.)  - Vol.  (~Q.(28)) _ 
, - .o  ~Oog ~)--' (. - 1)! 

which, of course, coincides with the expression in Schiitts' theorem when n = 2 

( ¢ . ( Q . )  = 2-n!).  

LEMMA 12: Let S be a simplex in R"  such that 0 is an extreme point of S. 

DeBne 

g ( 2 6 )  = { x  ~ S :  V o l .  (S n ( - S  + 2x)) >_ 2~}. 

Then 

1 2"- In!  Vol .  (S))  "-1. 
V o I . ( S \ g ( 2 ~ ) )  >_ 2._~(n_1)!6( log  n" = 

Proof.' Since Vol n (S \ S(26)) is invariant under volume preserving linear trans- 

formations we may assume that the extreme points of S are given by 

O ,  o l e l  ~ . . . ~ O : e n  fo r  s o m e  ce > O, 

• n where (%)j=1 is the standard unit vector basis of R". In this case the boundary 

of S(2~) is given by 
n 

2" H x j  - 25 = 0. 
j=l 
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Now S contains the cube W = [0, ,~]". Therefore we get, by Lemma 11: 

Vol ,, (S \ S(2/f)) >_ Vol ,, (W \ ,~(2(f)) 

= Vol ,, (0 _< xj _< ~ ,  xj < 2--~-i-_~ ) 
j = l  

n ~ t r n  
= Vol. (0 _< ~, _< 1.1-I ~j z ("-)- 2--~_,) • (~) 

j = l  

( a ) ,  n n 6 1 / - a n 2 n - l -  \ n - I  
- ~ (~) 2--, ( .  - 1)! ( log( - - -£~) )  

1 ( ~--,n! vol.(s))°-,. 
= 2 . _ 1 ( n _  1)!6 log n" 

LEMMA 13: Let S be as in Lemma 12. Then 

1 ( ~"-',,! vol (s)),,-, 
V o l ,  ( S \  ,.~(2~f)) _< 2 " - ' ( n -  1)! ~ log n" 

Proof: W.l.o.g. we may assume that  

II 

l " n  2 + c(.)ZOog ~) - .  

S --  co(0,  e l , . . . , e n ) .  

By Lemma 11 we get for W = [0, ~]" 

1 z 2 n - l \  n-1 1 
Vol n ( W  \ g ( 2 ~ ) )  <~ 2 n _ l ( n  _ 1)!g(log --~-~-) + C,(n)g(log v)"-2" 

If x,, > L is fixed, we get (from Lemma 11): )1 

n--I n--I 

j = l  j----1 

n--I (~ 

< Vol n - I  [.(0 < xj < _ 1 - x n , j  = 1 , . . . , n -  1, H xj <_ x,fi-~-y_l),. . \ 
j= l  

n--1 

= (1 - x , , ) - - '  vol  . _ ,  (0 _< xj _< 1, I I  xj < 
j----I 

6 
x, ,(1 - x , , ) " - 1 2  "-1  ) 

if , . ( , -x .~" - ' 2" - '  < ½ 

otherwise 

_< ¢3(n)~0og ½)"-~. 
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Therefore 

1 
Vol n (S \ at2o)) <2"- ' (n  - 1)! 

$(log 2"-I)n-I  1 .-5 n"-'~ + c1(n)6(log ~) 

1 

+ n f cs(n)$(log ~ )n-2 dt. 
1/. 

Remark: Lemmas 12 and 13 essentially state that the volume of S \ S(26) co- 
incides with that of W \ S(26) up to terms of the order $(log ~),-2. 

LEMMA 14: Let O, el , . . . ,  e, be the vertices M the simplex S, and let H1 and 1-12 
be hyperplanes such that 

(i) 0, el , . . .  ,en-2 E H1,H2, 

(ii) e,-1 E , e, e H5 • 
The~ we have rot W = [0, ~1" ana 0 < ~ < 

Yol, ( (W \ S(26)) N H~ n H e )  <_ c(-, HI , gs)6(log ~)1""-5. 

Proof." Let the hyperplanes H1 and H5 be given by the equations 

X n  = a l X n _  1 and X n  -~- a s X n - 1 .  

Then 

Y : =  Voln((W\S(2d~))nH1 + nil2 +) 

( ' ) = Vol, 0 < xj < -n xj < 2--~Z~_l,alXn-1 <_ Xn <_ a2Xn_ 1 
j = l  

n ~nn ) 
= n - "  Vol, 0_<xj < I, H x  j _< 2-'~T_l,alXn-1 <Xn <_a2Xn-1 

j----1 

f 
( , - 2  *"" ~ a(~,t) 

= n - "  Vol , - 2 0 < _ x j < _ l , j < _ n - 2 ,  HxJ<_2 ,_ l s t  ] 
Q ./=1 

where 

q = {(s , t )  e [0,115 : a,~ < t < a2~}. 
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an'* > 1 It is easily checked that the set {(s,t) e O : ~ _ ~} has measure at most 
6n" ~ log and for 

6n" 1 
(s,t) c O s.t. 2--~s----/-< 

we get by Lemma 11 

. -2 ,~n- .~ 
Vol , -2  0 _< z j  < 1 , j  <_ n - 2 ,  H zi  < 2n-]st  / 

8tn  3 _< ~2(n)~Oog ~ )  - 

Hence 

v _< ~ ( . ,  a~, a2)6 + ~c2(n) f 
[st> 6qn 1 ~  

_< c(n, al, a2)E(log ~)1-,-2. 

(log ~ )" -~  d(~, t) 

Replacing Schiitts' Lemmata 1.3 and 1.4 by our 12, 13 and 14 we get the 

following modification of Lemma 1.5 ([Sch/i]). 

PROPOSITION 3: Let S be the simplex spanned by zx = O, x2,. . . , z,+a. Assume 

that S has nonempty  interior and let H1 , . . . ,  Hn be hyperplanes such that 

o+ 
(*) z l , . . . xk -1  EH~; z k E H ~ ;  z~+ l , . . . , x ,+ l  EHk  k = l , . . . , n .  

Then for sutticiently sma/l 5 > 0 we have 

I 2"-~n! Vol. (S) ) . -~  z . -2  
2 - - , . ! ( . -  z)! ~(l°g n-X- 6 - c,~(log ~) 

j--1 

1 / 2"-1n! Vo ln(S) )"- '+c26( log~)n_  2 
<- 2 " - l n ! ( n -  1)!6( l°g n" 6 

where cl and c2 depend on n and on the hyperplanes H1, . . . , Hn. 

The proofs of the following lemmata can be found in [Schii]. 
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LEMMA 15: Let P be a convex symmetric polytope in R n. Then there is a family 

of simplices Si, Ti i = 1 , . . . , ~ , ( P )  and hyperplanes H~, z • ext(P),  such that 

(i) P N H Z N H ~ = C i f x # V .  

(ii) Sf3S. = , i f i # j  andT, ~_Pforal l i .  
: J 

(iii) For every i there is x • ext (P)  so that Si C P N HI .  

(iv) For every Ti there are hyperplanes Hii, j = 1 , . . . ,  n satisfying (*) of  Propo- 

sition 3 such that 

T, n N H~ = S,. 
j = l  

(v) For every i we have that 

- T~ • {Tk : k = I , . . . ,  ¢ , ( P ) }  and 

- Si • {Sk : k = 1,...,¢.(P)}. 

LEMMA 16: Let P be as above. Then there is a family of simpliees Si, Ti 

i = 1 , . . . ,  ~, (P)  and hyperplanes Hij j = 1 , . . . ,  n + 1 so that 

(i) } n } = ~ i f i # j ,  
' 3 

~.(e) 
(ii) [.J S i = P ,  

i=l  
(iii) Si c_ Ti c_ P, i = 1 , . . . ,  ¢,,(P), 

n+l  
(iv) N H .+. = &, i = i ,  ¢.(P), I J  " " " ' 

j = l  
• n (v) ( n o ) i =  ` satisfies (*) of Proposition 3 with respect to Ti, 

(vi) -T i  • {Tk : k = I , . . . , ¢ ( P ) } ,  - S i  • {Sk : k = I , . . . , ¢ , ( P ) }  for M1 

i = : , . . . , ¢ , ( P ) .  

THEOREM 3: Let P be a convex symmetric polytope in R ~ with nonempty in- 

terior. Then we have 

VF(O) - VF(~) I 
lira 
~--o ~(log ~)"-' n!(n - :)!¢"(P) 

where F is the convolution square of P and VF denotes the distribution function 

ofF. 

Proof: Clearly the assertion is equivalent to 

Vo:. (P \ ½e(26)) 
lira = ¢ . ( P ) .  
~--.0 6(log ~).-I 2"-In!(n - 1)! 
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Let Si, Ti, i = 1 , . . . ,  ¢(P) be the simplices given by Lemma 15. Since 

Ti,-Ti 3_ P for all i = 1 , . . . ,  ¢ , (P)  

it follows that 

Therefore 

1p(2~) = {zEP: Vol.(Pn(P+2z))>_ 2~} 

C_ {xETi: Vol.(Tin(-Ti+2z))>_2~} 

= ~,(2~)i  = ] , . . . ,¢,(e).  

¢~n ( P) 

i=1 

D 
~.(P) ¢~n (P) 

Us \N 
j = l  i=1 

~,(26) 

¢.  (P) 

.i=1 

Hence 

¢. (P) n 

j = l  i=1 

¢.(P) 

Vo~.(v\ ~P(2~)) >_ ~ Vol.((r~ \~(2~))n NHt, 1, 
j = l  i=1 

We can assume that the only extreme point of Tj which is also an extreme point 
of P is zero. This follows from the simple observation that 

N 

Vol. (~j(2~)) = Vol. ((T~ -.0)(2~)). 

By Proposition 3 (using the right hand side inequality) we have the estimate 

(1 og min V°l" (Ti ) )  "-1 1 2 "-In! i 
VoI.(P \ P(2~)) >-2"-'n!(n-1)!¢"(P)~ n" 

- c ( n ,  P)~(log ~)"-~. 
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Since 
lim log s._,0 1 o ~  = 1 for all c > 0  

we get the desired estimate from below. Using Lemma 16 instead of Lemma 15 

we get the same estimate from above. Indeed, let Si, Ti, i = 1 , . . . ,  ~,,(P) be the 

simplices given by Lemma 16, then 

Ti , -T i  C_ P Vi = 1 , . . . ,  ¢ , ( P ) .  

Thus 

We conclude that 

~-v(26) ~ ~(2s) vi = : , . . . ,  ~ . (v ) .  

¢kn( P) 

P \ ~-P(2~) :_ v \ U f,(26) 
i=I 

÷.(P) ÷.(P) 

= U s,\ U :,(2:) 
j = l  i=1 

~.(P) 

j=l 

÷.(P) a+l 

j--I  i=1 

c 
~,.(v) 

j=1 i=1 

therefore we obtain by Proposition 3 

~.(P) 
vol.(P\ ~P(2~))_< 

j=t  
vol. ((T~ \ :~(26))n N H~) 

i=l 

max Vol~ (Tj) 
1 ( 2"-:hi Jlog ) _< 

2"-'nl(n - I)! ¢"(P)~ n" 6 
n-1  

+ 4-, v)6Oog ~)"-~. 
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Remark: It is easy to check that Theorem 3 also holds in the non-symmetric 

case. | 

From Theorem 3 and Corollary 2 we immediately get 

COROLLARY 6: Let P be a convex symmetric polytope in R 2, then the distribu- 

tion function of the convolution square of P determines 

(i) Vol 2(e),  

(ii) Vol 2(P*), 

(iii) the number of extreme points of P. 

COROLLARY 7: 
(i) Let C be a convex symmetric body in R 2 such that the distribution function 

of the convolution square of C is equal to the distribution function of the 

convolution square of [-1,1] 2. Then C is an aflTne image of [-1,  1] 2. 

(ii) If  C is a convex body in R" such that the distribution function of the 

convolution square is equal to that of the n-dimensional simplex. Then C 

is an aflTne image of the simplex. 

Actually (i) and (ii) of Corollary 6 imply that  C is an afl]ne image of [-1,  1] 2, 

for these are the only convex symmetric bodies that  minimize 

Vol ~(e). Vol ~(e*). 

The second assertion of the corollary follows from the fact that for all n-dimen- 

sional polytopes P ~b,,(P) > (n + 1)! with equality iff P is a simplex. 

Remarks: It follows from a theorem of Rogers and Shephard that the simplex 

in R" is also determined by the distribution function of G = Ic * l-c. This is 

because the simplex is the only convex body C in R '~ satisfying 

Vol. (c n (c + x)) = (i - llxlls(c))" Vol. c 

where S(C) = (C - C), i.e. such that equality holds in Lemma 10 (i). 

Using the above identity the function G associated with the simplex S can be 

easily computed: 

a ( ~ )  = (1 - I lz l ls_s)" V o l .  (S). 

Therefore the distribution function of G is given by 
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and VG(O) - Vc(6) does not behave like 6(log ~ ) " - '  as 6 tends to zero. However, 

Theorem 1 provides a tool to determine the polar of the projection body P~ of 

a simplex S: 
F(0) F( tx )  

II=lle; = t--,01im 

Hence 

= n l l = l l s - s  Vol. (s). 

1 
P; = .  Vol. (s)(S - s). 
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